mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
# Face recognition: extract embeddings or compare two faces
|
|
# Usage: python run_recognition.py --image path/to/image.jpg
|
|
# python run_recognition.py --image1 face1.jpg --image2 face2.jpg
|
|
|
|
import argparse
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from uniface.detection import SCRFD, RetinaFace
|
|
from uniface.face_utils import compute_similarity
|
|
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
|
|
|
|
|
def get_recognizer(name: str):
|
|
if name == "arcface":
|
|
return ArcFace()
|
|
elif name == "mobileface":
|
|
return MobileFace()
|
|
else:
|
|
return SphereFace()
|
|
|
|
|
|
def run_inference(detector, recognizer, image_path: str):
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
faces = detector.detect(image)
|
|
if not faces:
|
|
print("No faces detected.")
|
|
return
|
|
|
|
print(f"Detected {len(faces)} face(s). Extracting embedding for the first face...")
|
|
|
|
landmarks = np.array(faces[0]["landmarks"]) # 5-point landmarks for alignment
|
|
embedding = recognizer.get_embedding(image, landmarks)
|
|
norm_embedding = recognizer.get_normalized_embedding(image, landmarks) # L2 normalized
|
|
|
|
print(f" Embedding shape: {embedding.shape}")
|
|
print(f" L2 norm (raw): {np.linalg.norm(embedding):.4f}")
|
|
print(f" L2 norm (normalized): {np.linalg.norm(norm_embedding):.4f}")
|
|
|
|
|
|
def compare_faces(detector, recognizer, image1_path: str, image2_path: str, threshold: float = 0.35):
|
|
img1 = cv2.imread(image1_path)
|
|
img2 = cv2.imread(image2_path)
|
|
|
|
if img1 is None or img2 is None:
|
|
print("Error: Failed to load one or both images")
|
|
return
|
|
|
|
faces1 = detector.detect(img1)
|
|
faces2 = detector.detect(img2)
|
|
|
|
if not faces1 or not faces2:
|
|
print("Error: No faces detected in one or both images")
|
|
return
|
|
|
|
landmarks1 = np.array(faces1[0]["landmarks"])
|
|
landmarks2 = np.array(faces2[0]["landmarks"])
|
|
|
|
embedding1 = recognizer.get_normalized_embedding(img1, landmarks1)
|
|
embedding2 = recognizer.get_normalized_embedding(img2, landmarks2)
|
|
|
|
# cosine similarity for normalized embeddings
|
|
similarity = compute_similarity(embedding1, embedding2, normalized=True)
|
|
is_match = similarity > threshold
|
|
|
|
print(f"Similarity: {similarity:.4f}")
|
|
print(f"Result: {'Same person' if is_match else 'Different person'} (threshold: {threshold})")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Face recognition and comparison")
|
|
parser.add_argument("--image", type=str, help="Single image for embedding extraction")
|
|
parser.add_argument("--image1", type=str, help="First image for comparison")
|
|
parser.add_argument("--image2", type=str, help="Second image for comparison")
|
|
parser.add_argument("--threshold", type=float, default=0.35, help="Similarity threshold")
|
|
parser.add_argument("--detector", type=str, default="retinaface", choices=["retinaface", "scrfd"])
|
|
parser.add_argument("--recognizer", type=str, default="arcface", choices=["arcface", "mobileface", "sphereface"])
|
|
args = parser.parse_args()
|
|
|
|
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
|
|
recognizer = get_recognizer(args.recognizer)
|
|
|
|
if args.image1 and args.image2:
|
|
compare_faces(detector, recognizer, args.image1, args.image2, args.threshold)
|
|
elif args.image:
|
|
run_inference(detector, recognizer, args.image)
|
|
else:
|
|
print("Error: Provide --image or both --image1 and --image2")
|
|
parser.print_help()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|