mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
93 lines
3.1 KiB
Python
93 lines
3.1 KiB
Python
# Real-time face search: match webcam faces against a reference image
|
|
# Usage: python run_face_search.py --image reference.jpg
|
|
|
|
import argparse
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from uniface.detection import SCRFD, RetinaFace
|
|
from uniface.face_utils import compute_similarity
|
|
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
|
|
|
|
|
def get_recognizer(name: str):
|
|
if name == "arcface":
|
|
return ArcFace()
|
|
elif name == "mobileface":
|
|
return MobileFace()
|
|
else:
|
|
return SphereFace()
|
|
|
|
|
|
def extract_reference_embedding(detector, recognizer, image_path: str) -> np.ndarray:
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
raise RuntimeError(f"Failed to load image: {image_path}")
|
|
|
|
faces = detector.detect(image)
|
|
if not faces:
|
|
raise RuntimeError("No faces found in reference image.")
|
|
|
|
landmarks = np.array(faces[0]["landmarks"])
|
|
return recognizer.get_normalized_embedding(image, landmarks)
|
|
|
|
|
|
def run_webcam(detector, recognizer, ref_embedding: np.ndarray, threshold: float = 0.4):
|
|
cap = cv2.VideoCapture(0) # 0 = default webcam
|
|
if not cap.isOpened():
|
|
raise RuntimeError("Webcam could not be opened.")
|
|
|
|
print("Press 'q' to quit")
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
frame = cv2.flip(frame, 1) # mirror for natural interaction
|
|
if not ret:
|
|
break
|
|
|
|
faces = detector.detect(frame)
|
|
|
|
for face in faces:
|
|
bbox = face["bbox"]
|
|
landmarks = np.array(face["landmarks"])
|
|
x1, y1, x2, y2 = map(int, bbox)
|
|
|
|
embedding = recognizer.get_normalized_embedding(frame, landmarks)
|
|
sim = compute_similarity(ref_embedding, embedding) # compare with reference
|
|
|
|
# green = match, red = unknown
|
|
label = f"Match ({sim:.2f})" if sim > threshold else f"Unknown ({sim:.2f})"
|
|
color = (0, 255, 0) if sim > threshold else (0, 0, 255)
|
|
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
|
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
|
|
|
cv2.imshow("Face Recognition", frame)
|
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Face search using a reference image")
|
|
parser.add_argument("--image", type=str, required=True, help="Reference face image")
|
|
parser.add_argument("--threshold", type=float, default=0.4, help="Match threshold")
|
|
parser.add_argument("--detector", type=str, default="scrfd", choices=["retinaface", "scrfd"])
|
|
parser.add_argument("--recognizer", type=str, default="arcface", choices=["arcface", "mobileface", "sphereface"])
|
|
args = parser.parse_args()
|
|
|
|
detector = RetinaFace() if args.detector == "retinaface" else SCRFD()
|
|
recognizer = get_recognizer(args.recognizer)
|
|
|
|
print(f"Loading reference: {args.image}")
|
|
ref_embedding = extract_reference_embedding(detector, recognizer, args.image)
|
|
|
|
run_webcam(detector, recognizer, ref_embedding, args.threshold)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|