Files
uniface/tests/test_recognition.py
yakhyo 2c78f39e5d ref: Add comprehensive test suite and enhance model functionality
- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils
- Add new scripts for age_gender, landmarks, and video detection
- Update documentation in README.md, MODELS.md, QUICKSTART.md
- Improve model constants and face utilities
- Update detection models (retinaface, scrfd) with enhanced functionality
- Update project configuration in pyproject.toml
2025-11-15 21:09:37 +09:00

212 lines
6.8 KiB
Python

import numpy as np
import pytest
from uniface.recognition import ArcFace, MobileFace, SphereFace
@pytest.fixture
def arcface_model():
"""
Fixture to initialize the ArcFace model for testing.
"""
return ArcFace()
@pytest.fixture
def mobileface_model():
"""
Fixture to initialize the MobileFace model for testing.
"""
return MobileFace()
@pytest.fixture
def sphereface_model():
"""
Fixture to initialize the SphereFace model for testing.
"""
return SphereFace()
@pytest.fixture
def mock_aligned_face():
"""
Create a mock 112x112 aligned face image.
"""
return np.random.randint(0, 255, (112, 112, 3), dtype=np.uint8)
@pytest.fixture
def mock_landmarks():
"""
Create mock 5-point facial landmarks.
"""
return np.array([
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041]
], dtype=np.float32)
# ArcFace Tests
def test_arcface_initialization(arcface_model):
"""
Test that the ArcFace model initializes correctly.
"""
assert arcface_model is not None, "ArcFace model initialization failed."
def test_arcface_embedding_shape(arcface_model, mock_aligned_face):
"""
Test that ArcFace produces embeddings with the correct shape.
"""
embedding = arcface_model.get_embedding(mock_aligned_face)
# ArcFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
def test_arcface_normalized_embedding(arcface_model, mock_landmarks):
"""
Test that normalized embeddings have unit length.
"""
# Create a larger mock image for alignment
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = arcface_model.get_normalized_embedding(mock_image, mock_landmarks)
# Check that embedding is normalized (L2 norm ≈ 1.0)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
def test_arcface_embedding_dtype(arcface_model, mock_aligned_face):
"""
Test that embeddings have the correct data type.
"""
embedding = arcface_model.get_embedding(mock_aligned_face)
assert embedding.dtype == np.float32, f"Expected float32, got {embedding.dtype}"
def test_arcface_consistency(arcface_model, mock_aligned_face):
"""
Test that the same input produces the same embedding.
"""
embedding1 = arcface_model.get_embedding(mock_aligned_face)
embedding2 = arcface_model.get_embedding(mock_aligned_face)
assert np.allclose(embedding1, embedding2), "Same input should produce same embedding"
# MobileFace Tests
def test_mobileface_initialization(mobileface_model):
"""
Test that the MobileFace model initializes correctly.
"""
assert mobileface_model is not None, "MobileFace model initialization failed."
def test_mobileface_embedding_shape(mobileface_model, mock_aligned_face):
"""
Test that MobileFace produces embeddings with the correct shape.
"""
embedding = mobileface_model.get_embedding(mock_aligned_face)
# MobileFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
def test_mobileface_normalized_embedding(mobileface_model, mock_landmarks):
"""
Test that MobileFace normalized embeddings have unit length.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = mobileface_model.get_normalized_embedding(mock_image, mock_landmarks)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
# SphereFace Tests
def test_sphereface_initialization(sphereface_model):
"""
Test that the SphereFace model initializes correctly.
"""
assert sphereface_model is not None, "SphereFace model initialization failed."
def test_sphereface_embedding_shape(sphereface_model, mock_aligned_face):
"""
Test that SphereFace produces embeddings with the correct shape.
"""
embedding = sphereface_model.get_embedding(mock_aligned_face)
# SphereFace typically produces 512-dimensional embeddings
assert embedding.shape[1] == 512, f"Expected 512-dim embedding, got {embedding.shape[1]}"
assert embedding.shape[0] == 1, "Embedding should have batch dimension of 1"
def test_sphereface_normalized_embedding(sphereface_model, mock_landmarks):
"""
Test that SphereFace normalized embeddings have unit length.
"""
mock_image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
embedding = sphereface_model.get_normalized_embedding(mock_image, mock_landmarks)
norm = np.linalg.norm(embedding)
assert np.isclose(norm, 1.0, atol=1e-5), f"Normalized embedding should have norm 1.0, got {norm}"
# Cross-model comparison tests
def test_different_models_different_embeddings(arcface_model, mobileface_model, mock_aligned_face):
"""
Test that different models produce different embeddings for the same input.
"""
arcface_emb = arcface_model.get_embedding(mock_aligned_face)
mobileface_emb = mobileface_model.get_embedding(mock_aligned_face)
# Embeddings should be different (with high probability for random input)
# We check that they're not identical
assert not np.allclose(arcface_emb, mobileface_emb), \
"Different models should produce different embeddings"
def test_embedding_similarity_computation(arcface_model, mock_aligned_face):
"""
Test computing similarity between embeddings.
"""
# Get two embeddings
emb1 = arcface_model.get_embedding(mock_aligned_face)
# Create a slightly different image
mock_aligned_face2 = mock_aligned_face.copy()
mock_aligned_face2[:10, :10] = 0 # Modify a small region
emb2 = arcface_model.get_embedding(mock_aligned_face2)
# Compute cosine similarity
from uniface import compute_similarity
similarity = compute_similarity(emb1, emb2)
# Similarity should be between -1 and 1
assert -1.0 <= similarity <= 1.0, f"Similarity should be in [-1, 1], got {similarity}"
def test_same_face_high_similarity(arcface_model, mock_aligned_face):
"""
Test that the same face produces high similarity.
"""
emb1 = arcface_model.get_embedding(mock_aligned_face)
emb2 = arcface_model.get_embedding(mock_aligned_face)
from uniface import compute_similarity
similarity = compute_similarity(emb1, emb2)
# Same image should have similarity close to 1.0
assert similarity > 0.99, f"Same face should have similarity > 0.99, got {similarity}"