Files
uniface/scripts/run_detection.py
yakhyo 2c78f39e5d ref: Add comprehensive test suite and enhance model functionality
- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils
- Add new scripts for age_gender, landmarks, and video detection
- Update documentation in README.md, MODELS.md, QUICKSTART.md
- Improve model constants and face utilities
- Update detection models (retinaface, scrfd) with enhanced functionality
- Update project configuration in pyproject.toml
2025-11-15 21:09:37 +09:00

81 lines
2.8 KiB
Python

import os
import cv2
import time
import argparse
import numpy as np
from uniface.detection import RetinaFace, SCRFD
from uniface.visualization import draw_detections
def run_inference(detector, image_path: str, vis_threshold: float = 0.6, save_dir: str = "outputs"):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
# 1. Get the list of face dictionaries from the detector
faces = detector.detect(image)
if faces:
# 2. Unpack the data into separate lists
bboxes = [face['bbox'] for face in faces]
scores = [face['confidence'] for face in faces]
landmarks = [face['landmarks'] for face in faces]
# 3. Pass the unpacked lists to the drawing function
draw_detections(image, bboxes, scores, landmarks, vis_threshold=0.6)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f"{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg")
cv2.imwrite(output_path, image)
print(f"Output saved at: {output_path}")
def main():
parser = argparse.ArgumentParser(description="Run face detection on an image.")
parser.add_argument("--image", type=str, required=True, help="Path to the input image")
parser.add_argument(
"--method",
type=str,
default="retinaface",
choices=['retinaface', 'scrfd'],
help="Detection method to use."
)
parser.add_argument("--threshold", type=float, default=0.6, help="Visualization confidence threshold")
parser.add_argument("--iterations", type=int, default=1, help="Number of inference runs for benchmarking")
parser.add_argument("--save_dir", type=str, default="outputs", help="Directory to save output images")
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
from uniface import enable_logging
enable_logging()
print(f"Initializing detector: {args.method}")
if args.method == 'retinaface':
detector = RetinaFace()
else:
detector = SCRFD()
avg_time = 0
for i in range(args.iterations):
start = time.time()
run_inference(detector, args.image, args.threshold, args.save_dir)
elapsed = time.time() - start
print(f"[{i + 1}/{args.iterations}] Inference time: {elapsed:.4f} seconds")
if i >= 0: # Avoid counting the first run if it includes model loading time
avg_time += elapsed
if args.iterations > 1:
# Adjust average calculation to exclude potential first-run overhead
effective_iterations = max(1, args.iterations)
print(
f"\nAverage inference time over {effective_iterations} runs: {avg_time / effective_iterations:.4f} seconds")
if __name__ == "__main__":
main()