mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
- Add new test files for age_gender, factory, landmark, recognition, scrfd, and utils - Add new scripts for age_gender, landmarks, and video detection - Update documentation in README.md, MODELS.md, QUICKSTART.md - Improve model constants and face utilities - Update detection models (retinaface, scrfd) with enhanced functionality - Update project configuration in pyproject.toml
150 lines
4.4 KiB
Python
150 lines
4.4 KiB
Python
"""Facial Landmark Detection Demo Script"""
|
|
|
|
import os
|
|
import cv2
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
from uniface import RetinaFace, SCRFD, Landmark106
|
|
|
|
|
|
def process_image(detector, landmarker, image_path: str, save_dir: str = "outputs"):
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
print(f"Processing: {image_path}")
|
|
|
|
# Detect faces
|
|
faces = detector.detect(image)
|
|
print(f" Detected {len(faces)} face(s)")
|
|
|
|
if not faces:
|
|
print(" No faces detected")
|
|
return
|
|
|
|
# Process each face
|
|
for i, face in enumerate(faces):
|
|
# Draw bounding box
|
|
bbox = face['bbox']
|
|
x1, y1, x2, y2 = map(int, bbox)
|
|
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
|
# Get and draw 106 landmarks
|
|
landmarks = landmarker.get_landmarks(image, bbox)
|
|
print(f" Face {i+1}: Extracted {len(landmarks)} landmarks")
|
|
|
|
for x, y in landmarks.astype(int):
|
|
cv2.circle(image, (x, y), 1, (0, 255, 0), -1)
|
|
|
|
# Add face count
|
|
cv2.putText(image, f"Face {i+1}", (x1, y1 - 10),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
|
|
|
# Add total count
|
|
cv2.putText(image, f"Faces: {len(faces)}", (10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
|
|
# Save result
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f"{Path(image_path).stem}_landmarks.jpg")
|
|
cv2.imwrite(output_path, image)
|
|
print(f"Output saved: {output_path}")
|
|
|
|
|
|
def run_webcam(detector, landmarker):
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
if not cap.isOpened():
|
|
print("Cannot open webcam")
|
|
return
|
|
|
|
print("Webcam opened")
|
|
print("Press 'q' to quit\n")
|
|
|
|
frame_count = 0
|
|
|
|
try:
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame_count += 1
|
|
|
|
# Detect faces
|
|
faces = detector.detect(frame)
|
|
|
|
# Process each face
|
|
for face in faces:
|
|
# Draw bounding box
|
|
bbox = face['bbox']
|
|
x1, y1, x2, y2 = map(int, bbox)
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
|
# Get and draw 106 landmarks
|
|
landmarks = landmarker.get_landmarks(frame, bbox)
|
|
for x, y in landmarks.astype(int):
|
|
cv2.circle(frame, (x, y), 1, (0, 255, 0), -1)
|
|
|
|
# Add info
|
|
cv2.putText(frame, f"Faces: {len(faces)}", (10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
cv2.putText(frame, "Press 'q' to quit", (10, frame.shape[0] - 10),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
|
|
|
cv2.imshow("106-Point Landmarks", frame)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
except KeyboardInterrupt:
|
|
print("\nInterrupted")
|
|
finally:
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
print(f"\nProcessed {frame_count} frames")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Run facial landmark detection")
|
|
parser.add_argument("--image", type=str, help="Path to input image")
|
|
parser.add_argument("--webcam", action="store_true", help="Use webcam instead of image")
|
|
parser.add_argument("--detector", type=str, default="retinaface",
|
|
choices=['retinaface', 'scrfd'], help="Face detector to use")
|
|
parser.add_argument("--save_dir", type=str, default="outputs",
|
|
help="Directory to save output images")
|
|
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Validate input
|
|
if not args.image and not args.webcam:
|
|
parser.error("Either --image or --webcam must be specified")
|
|
|
|
if args.verbose:
|
|
from uniface import enable_logging
|
|
enable_logging()
|
|
|
|
# Initialize models
|
|
print(f"Initializing detector: {args.detector}")
|
|
if args.detector == 'retinaface':
|
|
detector = RetinaFace()
|
|
else:
|
|
detector = SCRFD()
|
|
|
|
print("Initializing landmark detector...")
|
|
landmarker = Landmark106()
|
|
print("Models initialized\n")
|
|
|
|
# Process
|
|
if args.webcam:
|
|
run_webcam(detector, landmarker)
|
|
else:
|
|
process_image(detector, landmarker, args.image, args.save_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|