mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
- add dynamic onnx provider selection for m1/m2/m3/m4 macs - replace mkdocs with simple markdown files - fix model download and scrfd detection issues - update ci/cd workflows
448 lines
11 KiB
Markdown
448 lines
11 KiB
Markdown
# UniFace: All-in-One Face Analysis Library
|
|
|
|
[](https://opensource.org/licenses/MIT)
|
|

|
|
[](https://pypi.org/project/uniface/)
|
|
[](https://github.com/yakhyo/uniface/actions)
|
|
[](https://pepy.tech/project/uniface)
|
|
|
|
<div align="center">
|
|
<img src=".github/logos/logo_web.webp" width=75%>
|
|
</div>
|
|
|
|
**UniFace** is a lightweight, production-ready face analysis library built on ONNX Runtime. It provides high-performance face detection, recognition, landmark detection, and attribute analysis with hardware acceleration support across platforms.
|
|
|
|
---
|
|
|
|
## Features
|
|
|
|
- **High-Speed Face Detection**: ONNX-optimized RetinaFace and SCRFD models
|
|
- **Facial Landmark Detection**: Accurate 106-point landmark localization
|
|
- **Face Recognition**: ArcFace, MobileFace, and SphereFace embeddings
|
|
- **Attribute Analysis**: Age, gender, and emotion detection
|
|
- **Face Alignment**: Precise alignment for downstream tasks
|
|
- **Hardware Acceleration**: CoreML (Apple Silicon), CUDA (NVIDIA), CPU fallback
|
|
- **Simple API**: Intuitive factory functions and clean interfaces
|
|
- **Production-Ready**: Type hints, comprehensive logging, PEP8 compliant
|
|
|
|
---
|
|
|
|
## Installation
|
|
|
|
### Quick Install (All Platforms)
|
|
|
|
```bash
|
|
pip install uniface
|
|
```
|
|
|
|
### Platform-Specific Installation
|
|
|
|
#### macOS (Apple Silicon - M1/M2/M3/M4)
|
|
|
|
For optimal performance with **CoreML acceleration** (3-5x faster):
|
|
|
|
```bash
|
|
# Standard installation (CPU only)
|
|
pip install uniface
|
|
|
|
# With CoreML acceleration (recommended for M-series chips)
|
|
pip install uniface[silicon]
|
|
```
|
|
|
|
**Verify CoreML is available:**
|
|
```python
|
|
import onnxruntime as ort
|
|
print(ort.get_available_providers())
|
|
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
|
|
```
|
|
|
|
#### Linux/Windows with NVIDIA GPU
|
|
|
|
```bash
|
|
# With CUDA acceleration
|
|
pip install uniface[gpu]
|
|
```
|
|
|
|
**Requirements:**
|
|
- CUDA 11.x or 12.x
|
|
- cuDNN 8.x
|
|
- See [ONNX Runtime GPU requirements](https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html)
|
|
|
|
#### CPU-Only (All Platforms)
|
|
|
|
```bash
|
|
pip install uniface
|
|
```
|
|
|
|
### Install from Source
|
|
|
|
```bash
|
|
git clone https://github.com/yakhyo/uniface.git
|
|
cd uniface
|
|
pip install -e .
|
|
```
|
|
|
|
---
|
|
|
|
## Quick Start
|
|
|
|
### Face Detection
|
|
|
|
```python
|
|
import cv2
|
|
from uniface import RetinaFace
|
|
|
|
# Initialize detector
|
|
detector = RetinaFace()
|
|
|
|
# Load image
|
|
image = cv2.imread("image.jpg")
|
|
|
|
# Detect faces
|
|
faces = detector.detect(image)
|
|
|
|
# Process results
|
|
for face in faces:
|
|
bbox = face['bbox'] # [x1, y1, x2, y2]
|
|
confidence = face['confidence']
|
|
landmarks = face['landmarks'] # 5-point landmarks
|
|
print(f"Face detected with confidence: {confidence:.2f}")
|
|
```
|
|
|
|
### Face Recognition
|
|
|
|
```python
|
|
from uniface import ArcFace, RetinaFace
|
|
from uniface import compute_similarity
|
|
|
|
# Initialize models
|
|
detector = RetinaFace()
|
|
recognizer = ArcFace()
|
|
|
|
# Detect and extract embeddings
|
|
faces1 = detector.detect(image1)
|
|
faces2 = detector.detect(image2)
|
|
|
|
embedding1 = recognizer.get_normalized_embedding(image1, faces1[0]['landmarks'])
|
|
embedding2 = recognizer.get_normalized_embedding(image2, faces2[0]['landmarks'])
|
|
|
|
# Compare faces
|
|
similarity = compute_similarity(embedding1, embedding2)
|
|
print(f"Similarity: {similarity:.4f}")
|
|
```
|
|
|
|
### Facial Landmarks
|
|
|
|
```python
|
|
from uniface import RetinaFace, Landmark106
|
|
|
|
detector = RetinaFace()
|
|
landmarker = Landmark106()
|
|
|
|
faces = detector.detect(image)
|
|
landmarks = landmarker.get_landmarks(image, faces[0]['bbox'])
|
|
# Returns 106 (x, y) landmark points
|
|
```
|
|
|
|
### Age & Gender Detection
|
|
|
|
```python
|
|
from uniface import RetinaFace, AgeGender
|
|
|
|
detector = RetinaFace()
|
|
age_gender = AgeGender()
|
|
|
|
faces = detector.detect(image)
|
|
gender, age = age_gender.predict(image, faces[0]['bbox'])
|
|
print(f"{gender}, {age} years old")
|
|
```
|
|
|
|
---
|
|
|
|
## Documentation
|
|
|
|
- [**QUICKSTART.md**](QUICKSTART.md) - 5-minute getting started guide
|
|
- [**MODELS.md**](MODELS.md) - Model zoo, benchmarks, and selection guide
|
|
- [**Examples**](examples/) - Jupyter notebooks with detailed examples
|
|
|
|
---
|
|
|
|
## API Overview
|
|
|
|
### Factory Functions (Recommended)
|
|
|
|
```python
|
|
from uniface import create_detector, create_recognizer, create_landmarker
|
|
|
|
# Create detector with default settings
|
|
detector = create_detector('retinaface')
|
|
|
|
# Create with custom config
|
|
detector = create_detector(
|
|
'scrfd',
|
|
model_name='scrfd_10g_kps',
|
|
conf_thresh=0.8,
|
|
input_size=(640, 640)
|
|
)
|
|
|
|
# Recognition and landmarks
|
|
recognizer = create_recognizer('arcface')
|
|
landmarker = create_landmarker('2d106det')
|
|
```
|
|
|
|
### Direct Model Instantiation
|
|
|
|
```python
|
|
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace
|
|
from uniface.constants import RetinaFaceWeights
|
|
|
|
# Detection
|
|
detector = RetinaFace(
|
|
model_name=RetinaFaceWeights.MNET_V2,
|
|
conf_thresh=0.5,
|
|
nms_thresh=0.4
|
|
)
|
|
|
|
# Recognition
|
|
recognizer = ArcFace() # Uses default weights
|
|
recognizer = MobileFace() # Lightweight alternative
|
|
```
|
|
|
|
### High-Level Detection API
|
|
|
|
```python
|
|
from uniface import detect_faces
|
|
|
|
# One-line face detection
|
|
faces = detect_faces(image, method='retinaface', conf_thresh=0.8)
|
|
```
|
|
|
|
---
|
|
|
|
## Model Performance
|
|
|
|
### Face Detection (WIDER FACE Dataset)
|
|
|
|
| Model | Easy | Medium | Hard | Use Case |
|
|
|--------------------|--------|--------|--------|-------------------------|
|
|
| retinaface_mnet025 | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
|
|
| retinaface_mnet_v2 | 91.70% | 91.03% | 86.60% | Balanced (recommended) |
|
|
| retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy |
|
|
| scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications |
|
|
| scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed |
|
|
|
|
*Accuracy values from original papers: [RetinaFace](https://arxiv.org/abs/1905.00641), [SCRFD](https://arxiv.org/abs/2105.04714)*
|
|
|
|
**Benchmark on your hardware:**
|
|
```bash
|
|
python scripts/run_detection.py --image assets/test.jpg --iterations 100
|
|
```
|
|
|
|
See [MODELS.md](MODELS.md) for detailed model information and selection guide.
|
|
|
|
<div align="center">
|
|
<img src="assets/test_result.png">
|
|
</div>
|
|
|
|
---
|
|
|
|
## Examples
|
|
|
|
### Webcam Face Detection
|
|
|
|
```python
|
|
import cv2
|
|
from uniface import RetinaFace
|
|
from uniface.visualization import draw_detections
|
|
|
|
detector = RetinaFace()
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
faces = detector.detect(frame)
|
|
|
|
# Extract data for visualization
|
|
bboxes = [f['bbox'] for f in faces]
|
|
scores = [f['confidence'] for f in faces]
|
|
landmarks = [f['landmarks'] for f in faces]
|
|
|
|
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=0.6)
|
|
|
|
cv2.imshow("Face Detection", frame)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
```
|
|
|
|
### Face Search System
|
|
|
|
```python
|
|
import numpy as np
|
|
from uniface import RetinaFace, ArcFace
|
|
|
|
detector = RetinaFace()
|
|
recognizer = ArcFace()
|
|
|
|
# Build face database
|
|
database = {}
|
|
for person_id, image_path in person_images.items():
|
|
image = cv2.imread(image_path)
|
|
faces = detector.detect(image)
|
|
if faces:
|
|
embedding = recognizer.get_normalized_embedding(
|
|
image, faces[0]['landmarks']
|
|
)
|
|
database[person_id] = embedding
|
|
|
|
# Search for a face
|
|
query_image = cv2.imread("query.jpg")
|
|
query_faces = detector.detect(query_image)
|
|
if query_faces:
|
|
query_embedding = recognizer.get_normalized_embedding(
|
|
query_image, query_faces[0]['landmarks']
|
|
)
|
|
|
|
# Find best match
|
|
best_match = None
|
|
best_similarity = -1
|
|
|
|
for person_id, db_embedding in database.items():
|
|
similarity = np.dot(query_embedding, db_embedding.T)[0][0]
|
|
if similarity > best_similarity:
|
|
best_similarity = similarity
|
|
best_match = person_id
|
|
|
|
print(f"Best match: {best_match} (similarity: {best_similarity:.4f})")
|
|
```
|
|
|
|
More examples in the [examples/](examples/) directory.
|
|
|
|
---
|
|
|
|
## Advanced Configuration
|
|
|
|
### Custom ONNX Runtime Providers
|
|
|
|
```python
|
|
from uniface.onnx_utils import get_available_providers, create_onnx_session
|
|
|
|
# Check available providers
|
|
providers = get_available_providers()
|
|
print(f"Available: {providers}")
|
|
|
|
# Force CPU-only execution
|
|
from uniface import RetinaFace
|
|
detector = RetinaFace()
|
|
# Internally uses create_onnx_session() which auto-selects best provider
|
|
```
|
|
|
|
### Model Download and Caching
|
|
|
|
Models are automatically downloaded on first use and cached in `~/.uniface/models/`.
|
|
|
|
```python
|
|
from uniface.model_store import verify_model_weights
|
|
from uniface.constants import RetinaFaceWeights
|
|
|
|
# Manually download and verify a model
|
|
model_path = verify_model_weights(
|
|
RetinaFaceWeights.MNET_V2,
|
|
root='./custom_models' # Custom cache directory
|
|
)
|
|
```
|
|
|
|
### Logging Configuration
|
|
|
|
```python
|
|
from uniface import Logger
|
|
import logging
|
|
|
|
# Set logging level
|
|
Logger.setLevel(logging.DEBUG) # DEBUG, INFO, WARNING, ERROR
|
|
|
|
# Disable logging
|
|
Logger.setLevel(logging.CRITICAL)
|
|
```
|
|
|
|
---
|
|
|
|
## Testing
|
|
|
|
```bash
|
|
# Run all tests
|
|
pytest
|
|
|
|
# Run with coverage
|
|
pytest --cov=uniface --cov-report=html
|
|
|
|
# Run specific test file
|
|
pytest tests/test_retinaface.py -v
|
|
```
|
|
|
|
---
|
|
|
|
## Development
|
|
|
|
### Setup Development Environment
|
|
|
|
```bash
|
|
git clone https://github.com/yakhyo/uniface.git
|
|
cd uniface
|
|
|
|
# Install in editable mode with dev dependencies
|
|
pip install -e ".[dev]"
|
|
|
|
# Run tests
|
|
pytest
|
|
|
|
# Format code
|
|
black uniface/
|
|
isort uniface/
|
|
```
|
|
|
|
### Project Structure
|
|
|
|
```
|
|
uniface/
|
|
├── uniface/
|
|
│ ├── detection/ # Face detection models
|
|
│ ├── recognition/ # Face recognition models
|
|
│ ├── landmark/ # Landmark detection
|
|
│ ├── attribute/ # Age, gender, emotion
|
|
│ ├── onnx_utils.py # ONNX Runtime utilities
|
|
│ ├── model_store.py # Model download & caching
|
|
│ └── visualization.py # Drawing utilities
|
|
├── tests/ # Unit tests
|
|
├── examples/ # Example notebooks
|
|
└── scripts/ # Utility scripts
|
|
```
|
|
|
|
---
|
|
|
|
## References
|
|
|
|
### Model Training & Architectures
|
|
|
|
- **RetinaFace Training**: [yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch) - PyTorch implementation and training code
|
|
- **Face Recognition Training**: [yakhyo/face-recognition](https://github.com/yakhyo/face-recognition) - ArcFace, MobileFace, SphereFace training code
|
|
- **InsightFace**: [deepinsight/insightface](https://github.com/deepinsight/insightface) - Model architectures and pretrained weights
|
|
|
|
### Papers
|
|
|
|
- **RetinaFace**: [Single-Shot Multi-Level Face Localisation in the Wild](https://arxiv.org/abs/1905.00641)
|
|
- **SCRFD**: [Sample and Computation Redistribution for Efficient Face Detection](https://arxiv.org/abs/2105.04714)
|
|
- **ArcFace**: [Additive Angular Margin Loss for Deep Face Recognition](https://arxiv.org/abs/1801.07698)
|
|
|
|
---
|
|
|
|
## Contributing
|
|
|
|
Contributions are welcome! Please open an issue or submit a pull request on [GitHub](https://github.com/yakhyo/uniface).
|
|
|