Files
uniface/scripts/TESTING.md
yakhyo 77f14a616a add apple silicon support and update documentation
- add dynamic onnx provider selection for m1/m2/m3/m4 macs
- replace mkdocs with simple markdown files
- fix model download and scrfd detection issues
- update ci/cd workflows
2025-11-08 01:02:14 +09:00

8.8 KiB
Raw Blame History

Testing Scripts Guide

Complete guide to testing all scripts in the scripts/ directory.


📁 Available Scripts

  1. download_model.py - Download and verify model weights
  2. run_detection.py - Face detection on images
  3. run_recognition.py - Face recognition (extract embeddings)
  4. run_face_search.py - Real-time face matching with webcam
  5. sha256_generate.py - Generate SHA256 checksums for models

Testing Each Script

1. Test Model Download

# Download a specific model
python scripts/download_model.py --model MNET_V2

# Download all RetinaFace models (takes ~5 minutes, ~200MB)
python scripts/download_model.py

# Verify models are cached
ls -lh ~/.uniface/models/

Expected Output:

📥 Downloading model: retinaface_mnet_v2
2025-11-08 00:00:00 - INFO - Downloading model 'RetinaFaceWeights.MNET_V2' from https://...
Downloading ~/.uniface/models/retinaface_mnet_v2.onnx: 100%|████| 3.5M/3.5M
2025-11-08 00:00:05 - INFO - Successfully downloaded 'RetinaFaceWeights.MNET_V2'
✅ All requested weights are ready and verified.

2. Test Face Detection

# Basic detection
python scripts/run_detection.py --image assets/test.jpg

# With custom settings
python scripts/run_detection.py \
    --image assets/test.jpg \
    --method scrfd \
    --threshold 0.7 \
    --save_dir outputs

# Benchmark mode (100 iterations)
python scripts/run_detection.py \
    --image assets/test.jpg \
    --iterations 100

Expected Output:

Initializing detector: retinaface
2025-11-08 00:00:00 - INFO - Initializing RetinaFace with model=RetinaFaceWeights.MNET_V2...
2025-11-08 00:00:01 - INFO - CoreML acceleration enabled (Apple Silicon)
✅ Output saved at: outputs/test_out.jpg
[1/1] ⏱️ Inference time: 0.0234 seconds

Verify Output:

# Check output image was created
ls -lh outputs/test_out.jpg

# View the image (macOS)
open outputs/test_out.jpg

3. Test Face Recognition (Embedding Extraction)

# Extract embeddings from an image
python scripts/run_recognition.py --image assets/test.jpg

# With different models
python scripts/run_recognition.py \
    --image assets/test.jpg \
    --detector scrfd \
    --recognizer mobileface

Expected Output:

Initializing detector: retinaface
Initializing recognizer: arcface
2025-11-08 00:00:00 - INFO - Successfully initialized face encoder from ~/.uniface/models/w600k_mbf.onnx
Detected 1 face(s). Extracting embeddings for the first face...
  - Embedding shape: (1, 512)
  - L2 norm of unnormalized embedding: 64.2341
  - L2 norm of normalized embedding: 1.0000

4. Test Real-Time Face Search (Webcam)

Prerequisites:

  • Webcam connected
  • Reference image with a clear face
# Basic usage
python scripts/run_face_search.py --image assets/test.jpg

# With custom models
python scripts/run_face_search.py \
    --image assets/test.jpg \
    --detector scrfd \
    --recognizer arcface

Expected Behavior:

  1. Webcam window opens
  2. Faces are detected in real-time
  3. Green box = Match (similarity > 0.4)
  4. Red box = Unknown (similarity < 0.4)
  5. Press 'q' to quit

Expected Output:

Initializing models...
2025-11-08 00:00:00 - INFO - CoreML acceleration enabled (Apple Silicon)
Extracting reference embedding...
Webcam started. Press 'q' to quit.

Troubleshooting:

# If webcam doesn't open
python -c "import cv2; cap = cv2.VideoCapture(0); print('Webcam OK' if cap.isOpened() else 'Webcam FAIL')"

# If no faces detected
# - Ensure good lighting
# - Face should be frontal and clearly visible
# - Try lowering threshold: edit script line 29, change 0.4 to 0.3

5. Test SHA256 Generator (For Developers)

# Generate checksum for a model file
python scripts/sha256_generate.py ~/.uniface/models/retinaface_mnet_v2.onnx

# Generate for all models
for model in ~/.uniface/models/*.onnx; do
    python scripts/sha256_generate.py "$model"
done

🔍 Quick Verification Tests

Test 1: Imports Work

python -c "
from uniface.detection import create_detector
from uniface.recognition import create_recognizer
print('✅ Imports successful')
"

Test 2: Models Download

python -c "
from uniface import RetinaFace
detector = RetinaFace()
print('✅ Model downloaded and loaded')
"

Test 3: Detection Works

python -c "
import cv2
import numpy as np
from uniface import RetinaFace

detector = RetinaFace()
image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
faces = detector.detect(image)
print(f'✅ Detection works, found {len(faces)} faces')
"

Test 4: Recognition Works

python -c "
import cv2
import numpy as np
from uniface import RetinaFace, ArcFace

detector = RetinaFace()
recognizer = ArcFace()
image = cv2.imread('assets/test.jpg')
faces = detector.detect(image)
if faces:
    landmarks = np.array(faces[0]['landmarks'])
    embedding = recognizer.get_normalized_embedding(image, landmarks)
    print(f'✅ Recognition works, embedding shape: {embedding.shape}')
else:
    print('⚠️ No faces detected in test image')
"

End-to-End Test Workflow

Run this complete workflow to verify everything works:

#!/bin/bash
# Save as test_all_scripts.sh

echo "=== Testing UniFace Scripts ==="
echo ""

# Test 1: Download models
echo "1⃣ Testing model download..."
python scripts/download_model.py --model MNET_V2
if [ $? -eq 0 ]; then
    echo "✅ Model download: PASS"
else
    echo "❌ Model download: FAIL"
    exit 1
fi
echo ""

# Test 2: Face detection
echo "2⃣ Testing face detection..."
python scripts/run_detection.py --image assets/test.jpg --save_dir /tmp/uniface_test
if [ $? -eq 0 ] && [ -f /tmp/uniface_test/test_out.jpg ]; then
    echo "✅ Face detection: PASS"
else
    echo "❌ Face detection: FAIL"
    exit 1
fi
echo ""

# Test 3: Face recognition
echo "3⃣ Testing face recognition..."
python scripts/run_recognition.py --image assets/test.jpg > /tmp/uniface_recognition.log
if [ $? -eq 0 ] && grep -q "Embedding shape" /tmp/uniface_recognition.log; then
    echo "✅ Face recognition: PASS"
else
    echo "❌ Face recognition: FAIL"
    exit 1
fi
echo ""

echo "=== All Tests Passed! 🎉 ==="

Run the test suite:

chmod +x test_all_scripts.sh
./test_all_scripts.sh

Performance Benchmarking

Benchmark Detection Speed

# Test different models
for model in retinaface scrfd; do
    echo "Testing $model..."
    python scripts/run_detection.py \
        --image assets/test.jpg \
        --method $model \
        --iterations 50
done

Benchmark Recognition Speed

# Test different recognizers
for recognizer in arcface mobileface; do
    echo "Testing $recognizer..."
    time python scripts/run_recognition.py \
        --image assets/test.jpg \
        --recognizer $recognizer
done

🐛 Common Issues

Issue: "No module named 'uniface'"

# Solution: Install in editable mode
pip install -e .

Issue: "Failed to load image"

# Check image exists
ls -lh assets/test.jpg

# Try with absolute path
python scripts/run_detection.py --image $(pwd)/assets/test.jpg

Issue: "No faces detected"

# Lower confidence threshold
python scripts/run_detection.py \
    --image assets/test.jpg \
    --threshold 0.3

Issue: Models downloading slowly

# Check internet connection
curl -I https://github.com/yakhyo/uniface/releases

# Or download manually
wget https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv2.onnx \
    -O ~/.uniface/models/retinaface_mnet_v2.onnx

Issue: CoreML not available on Mac

# Install CoreML-enabled ONNX Runtime
pip uninstall onnxruntime
pip install onnxruntime-silicon

# Verify
python -c "import onnxruntime as ort; print(ort.get_available_providers())"
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']

Script Status Summary

Script Status API Updated Tested
download_model.py
run_detection.py
run_recognition.py
run_face_search.py
sha256_generate.py N/A

All scripts are updated and working with the new dict-based API! 🎉


📝 Notes

  • All scripts now use the factory functions (create_detector, create_recognizer)
  • Scripts work with the new dict-based detection API
  • Model download bug is fixed (enum vs string issue)
  • CoreML acceleration is automatically detected on Apple Silicon
  • All scripts include proper error handling

Need help with a specific script? Check the main README.md or QUICKSTART.md!