mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
* feat: Add Gaze Estimation, update docs and Add example notebook, inference code * docs: Update README.md
10 KiB
10 KiB
UniFace Quick Start Guide
Get up and running with UniFace in 5 minutes! This guide covers the most common use cases.
Installation
# macOS (Apple Silicon) - automatically includes ARM64 optimizations
pip install uniface
# Linux/Windows with NVIDIA GPU
pip install uniface[gpu]
# CPU-only (all platforms)
pip install uniface
1. Face Detection (30 seconds)
Detect faces in an image:
import cv2
from uniface import RetinaFace
# Load image
image = cv2.imread("photo.jpg")
# Initialize detector (models auto-download on first use)
detector = RetinaFace()
# Detect faces
faces = detector.detect(image)
# Print results
for i, face in enumerate(faces):
print(f"Face {i+1}:")
print(f" Confidence: {face['confidence']:.2f}")
print(f" BBox: {face['bbox']}")
print(f" Landmarks: {len(face['landmarks'])} points")
Output:
Face 1:
Confidence: 0.99
BBox: [120.5, 85.3, 245.8, 210.6]
Landmarks: 5 points
2. Visualize Detections (1 minute)
Draw bounding boxes and landmarks:
import cv2
from uniface import RetinaFace
from uniface.visualization import draw_detections
# Detect faces
detector = RetinaFace()
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Extract visualization data
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
# Draw on image
draw_detections(
image=image,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=0.6,
)
# Save result
cv2.imwrite("output.jpg", image)
print("Saved output.jpg")
3. Face Recognition (2 minutes)
Compare two faces:
import cv2
import numpy as np
from uniface import RetinaFace, ArcFace
# Initialize models
detector = RetinaFace()
recognizer = ArcFace()
# Load two images
image1 = cv2.imread("person1.jpg")
image2 = cv2.imread("person2.jpg")
# Detect faces
faces1 = detector.detect(image1)
faces2 = detector.detect(image2)
if faces1 and faces2:
# Extract embeddings
emb1 = recognizer.get_normalized_embedding(image1, faces1[0]['landmarks'])
emb2 = recognizer.get_normalized_embedding(image2, faces2[0]['landmarks'])
# Compute similarity (cosine similarity)
similarity = np.dot(emb1, emb2.T)[0][0]
# Interpret result
if similarity > 0.6:
print(f"Same person (similarity: {similarity:.3f})")
else:
print(f"Different people (similarity: {similarity:.3f})")
else:
print("No faces detected")
Similarity thresholds:
> 0.6: Same person (high confidence)0.4 - 0.6: Uncertain (manual review)< 0.4: Different people
4. Webcam Demo (2 minutes)
Real-time face detection:
import cv2
from uniface import RetinaFace
from uniface.visualization import draw_detections
detector = RetinaFace()
cap = cv2.VideoCapture(0)
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
if not ret:
break
# Detect faces
faces = detector.detect(frame)
# Draw results
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
)
# Show frame
cv2.imshow("UniFace - Press 'q' to quit", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
5. Age & Gender Detection (2 minutes)
Detect age and gender:
import cv2
from uniface import RetinaFace, AgeGender
# Initialize models
detector = RetinaFace()
age_gender = AgeGender()
# Load image
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Predict attributes
for i, face in enumerate(faces):
gender, age = age_gender.predict(image, face['bbox'])
gender_str = 'Female' if gender == 0 else 'Male'
print(f"Face {i+1}: {gender_str}, {age} years old")
Output:
Face 1: Male, 32 years old
Face 2: Female, 28 years old
6. Facial Landmarks (2 minutes)
Detect 106 facial landmarks:
import cv2
from uniface import RetinaFace, Landmark106
# Initialize models
detector = RetinaFace()
landmarker = Landmark106()
# Detect face and landmarks
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
if faces:
landmarks = landmarker.get_landmarks(image, faces[0]['bbox'])
print(f"Detected {len(landmarks)} landmarks")
# Draw landmarks
for x, y in landmarks.astype(int):
cv2.circle(image, (x, y), 2, (0, 255, 0), -1)
cv2.imwrite("landmarks.jpg", image)
7. Gaze Estimation (2 minutes)
Estimate where a person is looking:
import cv2
import numpy as np
from uniface import RetinaFace, MobileGaze
from uniface.visualization import draw_gaze
# Initialize models
detector = RetinaFace()
gaze_estimator = MobileGaze()
# Load image
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Estimate gaze for each face
for i, face in enumerate(faces):
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox[:4])
face_crop = image[y1:y2, x1:x2]
if face_crop.size > 0:
pitch, yaw = gaze_estimator.estimate(face_crop)
print(f"Face {i+1}: pitch={np.degrees(pitch):.1f}°, yaw={np.degrees(yaw):.1f}°")
# Draw gaze direction
draw_gaze(image, bbox, pitch, yaw)
cv2.imwrite("gaze_output.jpg", image)
Output:
Face 1: pitch=5.2°, yaw=-12.3°
Face 2: pitch=-8.1°, yaw=15.7°
8. Batch Processing (3 minutes)
Process multiple images:
import cv2
from pathlib import Path
from uniface import RetinaFace
detector = RetinaFace()
# Process all images in a folder
image_dir = Path("images/")
output_dir = Path("output/")
output_dir.mkdir(exist_ok=True)
for image_path in image_dir.glob("*.jpg"):
print(f"Processing {image_path.name}...")
image = cv2.imread(str(image_path))
faces = detector.detect(image)
print(f" Found {len(faces)} face(s)")
# Save results
output_path = output_dir / image_path.name
# ... draw and save ...
print("Done!")
9. Model Selection
Choose the right model for your use case:
Detection Models
from uniface.detection import RetinaFace, SCRFD, YOLOv5Face
from uniface.constants import RetinaFaceWeights, SCRFDWeights, YOLOv5FaceWeights
# Fast detection (mobile/edge devices)
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_025,
conf_thresh=0.7
)
# Balanced (recommended)
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2
)
# Real-time with high accuracy
detector = YOLOv5Face(
model_name=YOLOv5FaceWeights.YOLOV5S,
conf_thresh=0.6,
nms_thresh=0.5
)
# High accuracy (server/GPU)
detector = SCRFD(
model_name=SCRFDWeights.SCRFD_10G_KPS,
conf_thresh=0.5
)
Recognition Models
from uniface import ArcFace, MobileFace, SphereFace
from uniface.constants import MobileFaceWeights, SphereFaceWeights
# ArcFace (recommended for most use cases)
recognizer = ArcFace() # Best accuracy
# MobileFace (lightweight for mobile/edge)
recognizer = MobileFace(model_name=MobileFaceWeights.MNET_V2) # Fast, small size
# SphereFace (angular margin approach)
recognizer = SphereFace(model_name=SphereFaceWeights.SPHERE20) # Alternative method
Gaze Estimation Models
from uniface import MobileGaze
from uniface.constants import GazeWeights
# Default (recommended)
gaze_estimator = MobileGaze() # Uses RESNET34
# Lightweight (mobile/edge devices)
gaze_estimator = MobileGaze(model_name=GazeWeights.MOBILEONE_S0)
# High accuracy
gaze_estimator = MobileGaze(model_name=GazeWeights.RESNET50)
Common Issues
1. Models Not Downloading
# Manually download a model
from uniface.model_store import verify_model_weights
from uniface.constants import RetinaFaceWeights
model_path = verify_model_weights(RetinaFaceWeights.MNET_V2)
print(f"Model downloaded to: {model_path}")
2. Check Hardware Acceleration
import onnxruntime as ort
print("Available providers:", ort.get_available_providers())
# macOS M-series should show: ['CoreMLExecutionProvider', ...]
# NVIDIA GPU should show: ['CUDAExecutionProvider', ...]
3. Slow Performance on Mac
The standard installation includes ARM64 optimizations for Apple Silicon. If performance is slow, verify you're using the ARM64 build of Python:
python -c "import platform; print(platform.machine())"
# Should show: arm64 (not x86_64)
4. Import Errors
# Correct imports
from uniface.detection import RetinaFace
from uniface.recognition import ArcFace
from uniface.landmark import Landmark106
# Wrong imports
from uniface import retinaface # Module, not class
Next Steps
Jupyter Notebook Examples
Explore interactive examples for common tasks:
| Example | Description | Notebook |
|---|---|---|
| Face Detection | Detect faces and facial landmarks | face_detection.ipynb |
| Face Alignment | Align and crop faces for recognition | face_alignment.ipynb |
| Face Recognition | Extract face embeddings and compare faces | face_analyzer.ipynb |
| Face Verification | Compare two faces to verify identity | face_verification.ipynb |
| Face Search | Find a person in a group photo | face_search.ipynb |
Additional Resources
- Model Benchmarks: See MODELS.md for performance comparisons
- Full Documentation: Read README.md for complete API reference
References
- RetinaFace Training: yakhyo/retinaface-pytorch
- YOLOv5-Face ONNX: yakhyo/yolov5-face-onnx-inference
- Face Recognition Training: yakhyo/face-recognition
- Gaze Estimation Training: yakhyo/gaze-estimation
- InsightFace: deepinsight/insightface