Files
uniface/scripts/run_landmarks.py
Yakhyokhuja Valikhujaev 0c93598007 feat: Enhace emotion inference speed on ARM and add FaceAnalyzer, Face classes for ease of use. (#25)
* feat: Update linting and type annotations, return types in detect

* feat: add face analyzer and face classes

* chore: Update the format and clean up some docstrings

* docs: Update usage documentation

* feat: Change AgeGender model output to 0, 1 instead of string (Female, Male)

* test: Update testing code

* feat: Add Apple silicon backend for torchscript inference

* feat: Add face analyzer example and add run emotion for testing
2025-11-30 20:32:07 +09:00

118 lines
3.3 KiB
Python

# 106-point facial landmark detection
# Usage: python run_landmarks.py --image path/to/image.jpg
# python run_landmarks.py --webcam
import argparse
import os
from pathlib import Path
import cv2
from uniface import SCRFD, Landmark106, RetinaFace
def process_image(detector, landmarker, image_path: str, save_dir: str = 'outputs'):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
print(f'Detected {len(faces)} face(s)')
if not faces:
return
for i, face in enumerate(faces):
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
landmarks = landmarker.get_landmarks(image, bbox)
print(f' Face {i + 1}: {len(landmarks)} landmarks')
for x, y in landmarks.astype(int):
cv2.circle(image, (x, y), 1, (0, 255, 0), -1)
cv2.putText(
image,
f'Face {i + 1}',
(x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 255, 0),
2,
)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_landmarks.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def run_webcam(detector, landmarker):
cap = cv2.VideoCapture(0) # 0 = default webcam
if not cap.isOpened():
print('Cannot open webcam')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1) # mirror for natural interaction
if not ret:
break
faces = detector.detect(frame)
for face in faces:
bbox = face['bbox']
x1, y1, x2, y2 = map(int, bbox)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
landmarks = landmarker.get_landmarks(frame, bbox) # 106 points
for x, y in landmarks.astype(int):
cv2.circle(frame, (x, y), 1, (0, 255, 0), -1)
cv2.putText(
frame,
f'Faces: {len(faces)}',
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
cv2.imshow('106-Point Landmarks', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Run facial landmark detection')
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--webcam', action='store_true', help='Use webcam')
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
parser.add_argument('--save_dir', type=str, default='outputs')
args = parser.parse_args()
if not args.image and not args.webcam:
parser.error('Either --image or --webcam must be specified')
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
landmarker = Landmark106()
if args.webcam:
run_webcam(detector, landmarker)
else:
process_image(detector, landmarker, args.image, args.save_dir)
if __name__ == '__main__':
main()