mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
* refactor: Standardize naming conventions * chore: Update the version and re-run experiments * chore: Improve code quality tooling and documentation - Add pre-commit job to CI workflow for automated linting on PRs - Update uniface/__init__.py with copyright header, module docstring, and logically grouped exports - Revise CONTRIBUTING.md to reflect pre-commit handles all formatting - Remove redundant ruff check from CI (now handled by pre-commit) - Update build job Python version to 3.11 (matches requires-python)
99 lines
3.0 KiB
Python
99 lines
3.0 KiB
Python
# Batch face detection on a folder of images
|
|
# Usage: python batch_process.py --input images/ --output results/
|
|
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
from tqdm import tqdm
|
|
|
|
from uniface import SCRFD, RetinaFace
|
|
from uniface.visualization import draw_detections
|
|
|
|
|
|
def get_image_files(input_dir: Path, extensions: tuple) -> list:
|
|
files = []
|
|
for ext in extensions:
|
|
files.extend(input_dir.glob(f'*.{ext}'))
|
|
files.extend(input_dir.glob(f'*.{ext.upper()}'))
|
|
return sorted(files)
|
|
|
|
|
|
def process_image(detector, image_path: Path, output_path: Path, threshold: float) -> int:
|
|
"""Process single image. Returns face count or -1 on error."""
|
|
image = cv2.imread(str(image_path))
|
|
if image is None:
|
|
return -1
|
|
|
|
faces = detector.detect(image)
|
|
|
|
# unpack face data for visualization
|
|
bboxes = [f.bbox for f in faces]
|
|
scores = [f.confidence for f in faces]
|
|
landmarks = [f.landmarks for f in faces]
|
|
draw_detections(
|
|
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
|
|
)
|
|
|
|
cv2.putText(
|
|
image,
|
|
f'Faces: {len(faces)}',
|
|
(10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
1,
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
cv2.imwrite(str(output_path), image)
|
|
|
|
return len(faces)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Batch process images with face detection')
|
|
parser.add_argument('--input', type=str, required=True, help='Input directory')
|
|
parser.add_argument('--output', type=str, required=True, help='Output directory')
|
|
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
|
|
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
|
|
parser.add_argument('--extensions', type=str, default='jpg,jpeg,png,bmp', help='Image extensions')
|
|
args = parser.parse_args()
|
|
|
|
input_path = Path(args.input)
|
|
output_path = Path(args.output)
|
|
|
|
if not input_path.exists():
|
|
print(f"Error: Input directory '{args.input}' does not exist")
|
|
return
|
|
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
extensions = tuple(ext.strip() for ext in args.extensions.split(','))
|
|
image_files = get_image_files(input_path, extensions)
|
|
|
|
if not image_files:
|
|
print(f'No images found with extensions {extensions}')
|
|
return
|
|
|
|
print(f'Found {len(image_files)} images')
|
|
|
|
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
|
|
|
|
success, errors, total_faces = 0, 0, 0
|
|
|
|
for img_path in tqdm(image_files, desc='Processing', unit='img'):
|
|
out_path = output_path / f'{img_path.stem}_detected{img_path.suffix}'
|
|
result = process_image(detector, img_path, out_path, args.threshold)
|
|
|
|
if result >= 0:
|
|
success += 1
|
|
total_faces += result
|
|
else:
|
|
errors += 1
|
|
print(f'\nFailed: {img_path.name}')
|
|
|
|
print(f'\nDone! {success} processed, {errors} errors, {total_faces} faces total')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|