mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
* refactor: Standardize naming conventions * chore: Update the version and re-run experiments * chore: Improve code quality tooling and documentation - Add pre-commit job to CI workflow for automated linting on PRs - Update uniface/__init__.py with copyright header, module docstring, and logically grouped exports - Revise CONTRIBUTING.md to reflect pre-commit handles all formatting - Remove redundant ruff check from CI (now handled by pre-commit) - Update build job Python version to 3.11 (matches requires-python)
176 lines
5.6 KiB
Python
176 lines
5.6 KiB
Python
# Face parsing on detected faces
|
|
# Usage: python run_face_parsing.py --image path/to/image.jpg
|
|
# python run_face_parsing.py --webcam
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from uniface import RetinaFace
|
|
from uniface.constants import ParsingWeights
|
|
from uniface.parsing import BiSeNet
|
|
from uniface.visualization import vis_parsing_maps
|
|
|
|
|
|
def expand_bbox(
|
|
bbox: np.ndarray,
|
|
image_shape: tuple[int, int],
|
|
expand_ratio: float = 0.2,
|
|
expand_top_ratio: float = 0.4,
|
|
) -> tuple[int, int, int, int]:
|
|
"""
|
|
Expand bounding box to include full head region for face parsing.
|
|
|
|
Face detection typically returns tight face boxes, but face parsing
|
|
requires the full head including hair, ears, and neck.
|
|
|
|
Args:
|
|
bbox: Original bounding box [x1, y1, x2, y2].
|
|
image_shape: Image dimensions as (height, width).
|
|
expand_ratio: Expansion ratio for left, right, and bottom (default: 0.2 = 20%).
|
|
expand_top_ratio: Expansion ratio for top to capture hair/forehead (default: 0.4 = 40%).
|
|
|
|
Returns:
|
|
Tuple[int, int, int, int]: Expanded bbox (x1, y1, x2, y2) clamped to image bounds.
|
|
"""
|
|
x1, y1, x2, y2 = map(int, bbox[:4])
|
|
height, width = image_shape[:2]
|
|
|
|
# Calculate face dimensions
|
|
face_width = x2 - x1
|
|
face_height = y2 - y1
|
|
|
|
# Calculate expansion amounts
|
|
expand_x = int(face_width * expand_ratio)
|
|
expand_y_bottom = int(face_height * expand_ratio)
|
|
expand_y_top = int(face_height * expand_top_ratio)
|
|
|
|
# Expand and clamp to image boundaries
|
|
new_x1 = max(0, x1 - expand_x)
|
|
new_y1 = max(0, y1 - expand_y_top)
|
|
new_x2 = min(width, x2 + expand_x)
|
|
new_y2 = min(height, y2 + expand_y_bottom)
|
|
|
|
return new_x1, new_y1, new_x2, new_y2
|
|
|
|
|
|
def process_image(detector, parser, image_path: str, save_dir: str = 'outputs', expand_ratio: float = 0.2):
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
faces = detector.detect(image)
|
|
print(f'Detected {len(faces)} face(s)')
|
|
|
|
result_image = image.copy()
|
|
|
|
for i, face in enumerate(faces):
|
|
# Expand bbox to include full head for parsing
|
|
x1, y1, x2, y2 = expand_bbox(face.bbox, image.shape, expand_ratio=expand_ratio)
|
|
face_crop = image[y1:y2, x1:x2]
|
|
|
|
if face_crop.size == 0:
|
|
continue
|
|
|
|
# Parse the face
|
|
mask = parser.parse(face_crop)
|
|
print(f' Face {i + 1}: parsed with {len(set(mask.flatten()))} unique classes')
|
|
|
|
# Visualize the parsing result
|
|
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
|
|
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
|
|
|
|
# Place the visualization back on the original image
|
|
result_image[y1:y2, x1:x2] = vis_result
|
|
|
|
# Draw expanded bounding box
|
|
cv2.rectangle(result_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_parsing.jpg')
|
|
cv2.imwrite(output_path, result_image)
|
|
print(f'Output saved: {output_path}')
|
|
|
|
|
|
def run_webcam(detector, parser, expand_ratio: float = 0.2):
|
|
cap = cv2.VideoCapture(0)
|
|
if not cap.isOpened():
|
|
print('Cannot open webcam')
|
|
return
|
|
|
|
print("Press 'q' to quit")
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame = cv2.flip(frame, 1)
|
|
faces = detector.detect(frame)
|
|
|
|
for face in faces:
|
|
# Expand bbox to include full head for parsing
|
|
x1, y1, x2, y2 = expand_bbox(face.bbox, frame.shape, expand_ratio=expand_ratio)
|
|
face_crop = frame[y1:y2, x1:x2]
|
|
|
|
if face_crop.size == 0:
|
|
continue
|
|
|
|
# Parse the face
|
|
mask = parser.parse(face_crop)
|
|
|
|
# Visualize the parsing result
|
|
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
|
|
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
|
|
|
|
# Place the visualization back on the frame
|
|
frame[y1:y2, x1:x2] = vis_result
|
|
|
|
# Draw expanded bounding box
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
|
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
cv2.imshow('Face Parsing', frame)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
def main():
|
|
parser_arg = argparse.ArgumentParser(description='Run face parsing')
|
|
parser_arg.add_argument('--image', type=str, help='Path to input image')
|
|
parser_arg.add_argument('--webcam', action='store_true', help='Use webcam')
|
|
parser_arg.add_argument('--save_dir', type=str, default='outputs')
|
|
parser_arg.add_argument(
|
|
'--model', type=str, default=ParsingWeights.RESNET18, choices=[ParsingWeights.RESNET18, ParsingWeights.RESNET34]
|
|
)
|
|
parser_arg.add_argument(
|
|
'--expand-ratio',
|
|
type=float,
|
|
default=0.2,
|
|
help='Bbox expansion ratio for full head coverage (default: 0.2 = 20%%)',
|
|
)
|
|
args = parser_arg.parse_args()
|
|
|
|
if not args.image and not args.webcam:
|
|
parser_arg.error('Either --image or --webcam must be specified')
|
|
|
|
detector = RetinaFace()
|
|
parser = BiSeNet(model_name=ParsingWeights.RESNET34)
|
|
|
|
if args.webcam:
|
|
run_webcam(detector, parser, expand_ratio=args.expand_ratio)
|
|
else:
|
|
process_image(detector, parser, args.image, args.save_dir, expand_ratio=args.expand_ratio)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|