mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
- add dynamic onnx provider selection for m1/m2/m3/m4 macs - replace mkdocs with simple markdown files - fix model download and scrfd detection issues - update ci/cd workflows
390 lines
8.8 KiB
Markdown
390 lines
8.8 KiB
Markdown
# Testing Scripts Guide
|
||
|
||
Complete guide to testing all scripts in the `scripts/` directory.
|
||
|
||
---
|
||
|
||
## 📁 Available Scripts
|
||
|
||
1. **download_model.py** - Download and verify model weights
|
||
2. **run_detection.py** - Face detection on images
|
||
3. **run_recognition.py** - Face recognition (extract embeddings)
|
||
4. **run_face_search.py** - Real-time face matching with webcam
|
||
5. **sha256_generate.py** - Generate SHA256 checksums for models
|
||
|
||
---
|
||
|
||
## Testing Each Script
|
||
|
||
### 1. Test Model Download
|
||
|
||
```bash
|
||
# Download a specific model
|
||
python scripts/download_model.py --model MNET_V2
|
||
|
||
# Download all RetinaFace models (takes ~5 minutes, ~200MB)
|
||
python scripts/download_model.py
|
||
|
||
# Verify models are cached
|
||
ls -lh ~/.uniface/models/
|
||
```
|
||
|
||
**Expected Output:**
|
||
```
|
||
📥 Downloading model: retinaface_mnet_v2
|
||
2025-11-08 00:00:00 - INFO - Downloading model 'RetinaFaceWeights.MNET_V2' from https://...
|
||
Downloading ~/.uniface/models/retinaface_mnet_v2.onnx: 100%|████| 3.5M/3.5M
|
||
2025-11-08 00:00:05 - INFO - Successfully downloaded 'RetinaFaceWeights.MNET_V2'
|
||
✅ All requested weights are ready and verified.
|
||
```
|
||
|
||
---
|
||
|
||
### 2. Test Face Detection
|
||
|
||
```bash
|
||
# Basic detection
|
||
python scripts/run_detection.py --image assets/test.jpg
|
||
|
||
# With custom settings
|
||
python scripts/run_detection.py \
|
||
--image assets/test.jpg \
|
||
--method scrfd \
|
||
--threshold 0.7 \
|
||
--save_dir outputs
|
||
|
||
# Benchmark mode (100 iterations)
|
||
python scripts/run_detection.py \
|
||
--image assets/test.jpg \
|
||
--iterations 100
|
||
```
|
||
|
||
**Expected Output:**
|
||
```
|
||
Initializing detector: retinaface
|
||
2025-11-08 00:00:00 - INFO - Initializing RetinaFace with model=RetinaFaceWeights.MNET_V2...
|
||
2025-11-08 00:00:01 - INFO - CoreML acceleration enabled (Apple Silicon)
|
||
✅ Output saved at: outputs/test_out.jpg
|
||
[1/1] ⏱️ Inference time: 0.0234 seconds
|
||
```
|
||
|
||
**Verify Output:**
|
||
```bash
|
||
# Check output image was created
|
||
ls -lh outputs/test_out.jpg
|
||
|
||
# View the image (macOS)
|
||
open outputs/test_out.jpg
|
||
```
|
||
|
||
---
|
||
|
||
### 3. Test Face Recognition (Embedding Extraction)
|
||
|
||
```bash
|
||
# Extract embeddings from an image
|
||
python scripts/run_recognition.py --image assets/test.jpg
|
||
|
||
# With different models
|
||
python scripts/run_recognition.py \
|
||
--image assets/test.jpg \
|
||
--detector scrfd \
|
||
--recognizer mobileface
|
||
```
|
||
|
||
**Expected Output:**
|
||
```
|
||
Initializing detector: retinaface
|
||
Initializing recognizer: arcface
|
||
2025-11-08 00:00:00 - INFO - Successfully initialized face encoder from ~/.uniface/models/w600k_mbf.onnx
|
||
Detected 1 face(s). Extracting embeddings for the first face...
|
||
- Embedding shape: (1, 512)
|
||
- L2 norm of unnormalized embedding: 64.2341
|
||
- L2 norm of normalized embedding: 1.0000
|
||
```
|
||
|
||
---
|
||
|
||
### 4. Test Real-Time Face Search (Webcam)
|
||
|
||
**Prerequisites:**
|
||
- Webcam connected
|
||
- Reference image with a clear face
|
||
|
||
```bash
|
||
# Basic usage
|
||
python scripts/run_face_search.py --image assets/test.jpg
|
||
|
||
# With custom models
|
||
python scripts/run_face_search.py \
|
||
--image assets/test.jpg \
|
||
--detector scrfd \
|
||
--recognizer arcface
|
||
```
|
||
|
||
**Expected Behavior:**
|
||
1. Webcam window opens
|
||
2. Faces are detected in real-time
|
||
3. Green box = Match (similarity > 0.4)
|
||
4. Red box = Unknown (similarity < 0.4)
|
||
5. Press 'q' to quit
|
||
|
||
**Expected Output:**
|
||
```
|
||
Initializing models...
|
||
2025-11-08 00:00:00 - INFO - CoreML acceleration enabled (Apple Silicon)
|
||
Extracting reference embedding...
|
||
Webcam started. Press 'q' to quit.
|
||
```
|
||
|
||
**Troubleshooting:**
|
||
```bash
|
||
# If webcam doesn't open
|
||
python -c "import cv2; cap = cv2.VideoCapture(0); print('Webcam OK' if cap.isOpened() else 'Webcam FAIL')"
|
||
|
||
# If no faces detected
|
||
# - Ensure good lighting
|
||
# - Face should be frontal and clearly visible
|
||
# - Try lowering threshold: edit script line 29, change 0.4 to 0.3
|
||
```
|
||
|
||
---
|
||
|
||
### 5. Test SHA256 Generator (For Developers)
|
||
|
||
```bash
|
||
# Generate checksum for a model file
|
||
python scripts/sha256_generate.py ~/.uniface/models/retinaface_mnet_v2.onnx
|
||
|
||
# Generate for all models
|
||
for model in ~/.uniface/models/*.onnx; do
|
||
python scripts/sha256_generate.py "$model"
|
||
done
|
||
```
|
||
|
||
---
|
||
|
||
## 🔍 Quick Verification Tests
|
||
|
||
### Test 1: Imports Work
|
||
|
||
```bash
|
||
python -c "
|
||
from uniface.detection import create_detector
|
||
from uniface.recognition import create_recognizer
|
||
print('✅ Imports successful')
|
||
"
|
||
```
|
||
|
||
### Test 2: Models Download
|
||
|
||
```bash
|
||
python -c "
|
||
from uniface import RetinaFace
|
||
detector = RetinaFace()
|
||
print('✅ Model downloaded and loaded')
|
||
"
|
||
```
|
||
|
||
### Test 3: Detection Works
|
||
|
||
```bash
|
||
python -c "
|
||
import cv2
|
||
import numpy as np
|
||
from uniface import RetinaFace
|
||
|
||
detector = RetinaFace()
|
||
image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
||
faces = detector.detect(image)
|
||
print(f'✅ Detection works, found {len(faces)} faces')
|
||
"
|
||
```
|
||
|
||
### Test 4: Recognition Works
|
||
|
||
```bash
|
||
python -c "
|
||
import cv2
|
||
import numpy as np
|
||
from uniface import RetinaFace, ArcFace
|
||
|
||
detector = RetinaFace()
|
||
recognizer = ArcFace()
|
||
image = cv2.imread('assets/test.jpg')
|
||
faces = detector.detect(image)
|
||
if faces:
|
||
landmarks = np.array(faces[0]['landmarks'])
|
||
embedding = recognizer.get_normalized_embedding(image, landmarks)
|
||
print(f'✅ Recognition works, embedding shape: {embedding.shape}')
|
||
else:
|
||
print('⚠️ No faces detected in test image')
|
||
"
|
||
```
|
||
|
||
---
|
||
|
||
## End-to-End Test Workflow
|
||
|
||
Run this complete workflow to verify everything works:
|
||
|
||
```bash
|
||
#!/bin/bash
|
||
# Save as test_all_scripts.sh
|
||
|
||
echo "=== Testing UniFace Scripts ==="
|
||
echo ""
|
||
|
||
# Test 1: Download models
|
||
echo "1️⃣ Testing model download..."
|
||
python scripts/download_model.py --model MNET_V2
|
||
if [ $? -eq 0 ]; then
|
||
echo "✅ Model download: PASS"
|
||
else
|
||
echo "❌ Model download: FAIL"
|
||
exit 1
|
||
fi
|
||
echo ""
|
||
|
||
# Test 2: Face detection
|
||
echo "2️⃣ Testing face detection..."
|
||
python scripts/run_detection.py --image assets/test.jpg --save_dir /tmp/uniface_test
|
||
if [ $? -eq 0 ] && [ -f /tmp/uniface_test/test_out.jpg ]; then
|
||
echo "✅ Face detection: PASS"
|
||
else
|
||
echo "❌ Face detection: FAIL"
|
||
exit 1
|
||
fi
|
||
echo ""
|
||
|
||
# Test 3: Face recognition
|
||
echo "3️⃣ Testing face recognition..."
|
||
python scripts/run_recognition.py --image assets/test.jpg > /tmp/uniface_recognition.log
|
||
if [ $? -eq 0 ] && grep -q "Embedding shape" /tmp/uniface_recognition.log; then
|
||
echo "✅ Face recognition: PASS"
|
||
else
|
||
echo "❌ Face recognition: FAIL"
|
||
exit 1
|
||
fi
|
||
echo ""
|
||
|
||
echo "=== All Tests Passed! 🎉 ==="
|
||
```
|
||
|
||
**Run the test suite:**
|
||
```bash
|
||
chmod +x test_all_scripts.sh
|
||
./test_all_scripts.sh
|
||
```
|
||
|
||
---
|
||
|
||
## Performance Benchmarking
|
||
|
||
### Benchmark Detection Speed
|
||
|
||
```bash
|
||
# Test different models
|
||
for model in retinaface scrfd; do
|
||
echo "Testing $model..."
|
||
python scripts/run_detection.py \
|
||
--image assets/test.jpg \
|
||
--method $model \
|
||
--iterations 50
|
||
done
|
||
```
|
||
|
||
### Benchmark Recognition Speed
|
||
|
||
```bash
|
||
# Test different recognizers
|
||
for recognizer in arcface mobileface; do
|
||
echo "Testing $recognizer..."
|
||
time python scripts/run_recognition.py \
|
||
--image assets/test.jpg \
|
||
--recognizer $recognizer
|
||
done
|
||
```
|
||
|
||
---
|
||
|
||
## 🐛 Common Issues
|
||
|
||
### Issue: "No module named 'uniface'"
|
||
|
||
```bash
|
||
# Solution: Install in editable mode
|
||
pip install -e .
|
||
```
|
||
|
||
### Issue: "Failed to load image"
|
||
|
||
```bash
|
||
# Check image exists
|
||
ls -lh assets/test.jpg
|
||
|
||
# Try with absolute path
|
||
python scripts/run_detection.py --image $(pwd)/assets/test.jpg
|
||
```
|
||
|
||
### Issue: "No faces detected"
|
||
|
||
```bash
|
||
# Lower confidence threshold
|
||
python scripts/run_detection.py \
|
||
--image assets/test.jpg \
|
||
--threshold 0.3
|
||
```
|
||
|
||
### Issue: Models downloading slowly
|
||
|
||
```bash
|
||
# Check internet connection
|
||
curl -I https://github.com/yakhyo/uniface/releases
|
||
|
||
# Or download manually
|
||
wget https://github.com/yakhyo/uniface/releases/download/v0.1.2/retinaface_mv2.onnx \
|
||
-O ~/.uniface/models/retinaface_mnet_v2.onnx
|
||
```
|
||
|
||
### Issue: CoreML not available on Mac
|
||
|
||
```bash
|
||
# Install CoreML-enabled ONNX Runtime
|
||
pip uninstall onnxruntime
|
||
pip install onnxruntime-silicon
|
||
|
||
# Verify
|
||
python -c "import onnxruntime as ort; print(ort.get_available_providers())"
|
||
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
|
||
```
|
||
|
||
---
|
||
|
||
## ✅ Script Status Summary
|
||
|
||
| Script | Status | API Updated | Tested |
|
||
|-----------------------|--------|-------------|--------|
|
||
| download_model.py | ✅ | ✅ | ✅ |
|
||
| run_detection.py | ✅ | ✅ | ✅ |
|
||
| run_recognition.py | ✅ | ✅ | ✅ |
|
||
| run_face_search.py | ✅ | ✅ | ✅ |
|
||
| sha256_generate.py | ✅ | N/A | ✅ |
|
||
|
||
All scripts are updated and working with the new dict-based API! 🎉
|
||
|
||
---
|
||
|
||
## 📝 Notes
|
||
|
||
- All scripts now use the factory functions (`create_detector`, `create_recognizer`)
|
||
- Scripts work with the new dict-based detection API
|
||
- Model download bug is fixed (enum vs string issue)
|
||
- CoreML acceleration is automatically detected on Apple Silicon
|
||
- All scripts include proper error handling
|
||
|
||
---
|
||
|
||
Need help with a specific script? Check the main [README.md](../README.md) or [QUICKSTART.md](../QUICKSTART.md)!
|
||
|