Files
uniface/uniface/recognition/base.py
yakhyo 77f14a616a add apple silicon support and update documentation
- add dynamic onnx provider selection for m1/m2/m3/m4 macs
- replace mkdocs with simple markdown files
- fix model download and scrfd detection issues
- update ci/cd workflows
2025-11-08 01:02:14 +09:00

146 lines
5.3 KiB
Python

# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
from abc import ABC, abstractmethod
import cv2
import numpy as np
from dataclasses import dataclass
from typing import Tuple, Union, List
from uniface.log import Logger
from uniface.face_utils import face_alignment
from uniface.onnx_utils import create_onnx_session
@dataclass
class PreprocessConfig:
"""
Configuration for preprocessing images before feeding them into the model.
"""
input_mean: Union[float, List[float]] = 127.5
input_std: Union[float, List[float]] = 127.5
input_size: Tuple[int, int] = (112, 112)
class BaseRecognizer(ABC):
"""
Abstract Base Class for all face recognition models.
It provides the core functionality for preprocessing, inference, and embedding extraction.
"""
@abstractmethod
def __init__(self, model_path: str, preprocessing: PreprocessConfig) -> None:
"""
Initializes the model. Subclasses must call this.
Args:
model_path (str): The direct path to the verified ONNX model.
preprocessing (PreprocessConfig): The configuration for preprocessing.
"""
self.input_mean = preprocessing.input_mean
self.input_std = preprocessing.input_std
self.input_size = preprocessing.input_size
self.model_path = model_path
self._initialize_model()
def _initialize_model(self) -> None:
"""
Loads the ONNX model and prepares it for inference.
Raises:
RuntimeError: If the model fails to load or initialize.
"""
try:
# Initialize model session with available providers
self.session = create_onnx_session(self.model_path)
# Extract input configuration
input_cfg = self.session.get_inputs()[0]
self.input_name = input_cfg.name
# Verify input dimensions match our configuration
input_shape = input_cfg.shape
model_input_size = tuple(input_shape[2:4][::-1]) # (width, height)
if model_input_size != self.input_size:
Logger.warning(f"Model input size {model_input_size} differs from configured size {self.input_size}")
# Extract output configuration
self.output_names = [output.name for output in self.session.get_outputs()]
self.output_shape = self.session.get_outputs()[0].shape
assert len(self.output_names) == 1, "Expected only one output node."
Logger.info(f"Successfully initialized face encoder from {self.model_path}")
except Exception as e:
Logger.error(f"Failed to load face encoder model from '{self.model_path}'", exc_info=True)
raise RuntimeError(f"Failed to initialize model session for '{self.model_path}'") from e
def preprocess(self, face_img: np.ndarray) -> np.ndarray:
"""
Preprocess the image: resize, normalize, and convert it to a blob.
Args:
face_img: Input image in BGR format.
Returns:
Preprocessed image as a NumPy array ready for inference.
"""
resized_img = cv2.resize(face_img, self.input_size)
if isinstance(self.input_std, (list, tuple)):
# Per-channel normalization
rgb_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2RGB).astype(np.float32)
normalized_img = (rgb_img - np.array(self.input_mean, dtype=np.float32)) / \
np.array(self.input_std, dtype=np.float32)
# Change to NCHW (batch, channels, height, width)
blob = np.transpose(normalized_img, (2, 0, 1)) # CHW
blob = np.expand_dims(blob, axis=0) # NCHW
else:
# Single-value normalization
blob = cv2.dnn.blobFromImage(
resized_img,
scalefactor=1.0 / self.input_std,
size=self.input_size,
mean=(self.input_mean, self.input_mean, self.input_mean),
swapRB=True # Convert BGR to RGB
)
return blob
def get_embedding(self, image: np.ndarray, landmarks: np.ndarray) -> np.ndarray:
"""
Extracts face embedding from an image.
Args:
image: Input face image (BGR format).
landmarks: Facial landmarks (5 points for alignment).
Returns:
Face embedding vector (typically 512-dimensional).
"""
# Align face using landmarks
aligned_face, _ = face_alignment(image, landmarks)
# Generate embedding from aligned face
face_blob = self.preprocess(aligned_face)
embedding = self.session.run(self.output_names, {self.input_name: face_blob})[0]
return embedding
def get_normalized_embedding(self, image: np.ndarray, landmarks: np.ndarray) -> np.ndarray:
"""
Extracts a l2 normalized face embedding vector from an image.
Args:
image: Input face image (BGR format).
landmarks: Facial landmarks (5 points for alignment).
Returns:
Normalized face embedding vector (typically 512-dimensional).
"""
embedding = self.get_embedding(image, landmarks)
norm = np.linalg.norm(embedding)
return embedding / norm if norm > 0 else embedding