Files
uniface/README.md
2025-11-07 23:58:47 +09:00

304 lines
10 KiB
Markdown

# UniFace: All-in-One Face Analysis Library
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
![Python](https://img.shields.io/badge/Python-3.8%2B-blue)
[![PyPI Version](https://img.shields.io/pypi/v/uniface.svg)](https://pypi.org/project/uniface/)
[![Build Status](https://github.com/yakhyo/uniface/actions/workflows/build.yml/badge.svg)](https://github.com/yakhyo/uniface/actions)
[![GitHub Repository](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/yakhyo/uniface)
[![Downloads](https://pepy.tech/badge/uniface)](https://pepy.tech/project/uniface)
[![Code Style: PEP8](https://img.shields.io/badge/code%20style-PEP8-green.svg)](https://www.python.org/dev/peps/pep-0008/)
[![GitHub Release Downloads](https://img.shields.io/github/downloads/yakhyo/uniface/total.svg?label=Model%20Downloads)](https://github.com/yakhyo/uniface/releases)
<div align="center">
<img src=".github/logos/logo_web.webp" width=75%>
</div>
**uniface** is a lightweight face detection library designed for high-performance face localization, landmark detection and face alignment. The library supports ONNX models and provides utilities for bounding box visualization and landmark plotting. To train RetinaFace model, see https://github.com/yakhyo/retinaface-pytorch.
---
## Features
| Date | Feature Description |
| ---------- | --------------------------------------------------------------------------------------------------------------------- |
| Planned | 🎭**Age and Gender Detection**: Planned feature for predicting age and gender from facial images. |
| Planned | 🧩**Face Recognition**: Upcoming capability to identify and verify faces. |
| 2024-11-21 | 🔄**Face Alignment**: Added precise face alignment for better downstream tasks. |
| 2024-11-20 | ⚡**High-Speed Face Detection**: ONNX model integration for faster and efficient face detection. |
| 2024-11-20 | 🎯**Facial Landmark Localization**: Accurate detection of key facial features like eyes, nose, and mouth. |
| 2024-11-20 | 🛠**API for Inference and Visualization**: Simplified API for seamless inference and visual results generation. |
---
## Installation
The easiest way to install **UniFace** is via [PyPI](https://pypi.org/project/uniface/). This will automatically install the library along with its prerequisites.
```bash
pip install uniface
```
To work with the latest version of **UniFace**, which may not yet be released on PyPI, you can install it directly from the repository:
```bash
git clone https://github.com/yakhyo/uniface.git
cd uniface
pip install -e .
```
---
## Quick Start
To get started with face detection using **UniFace**, check out the [example notebook](examples/face_detection.ipynb).
It demonstrates how to initialize the model, run inference, and visualize the results.
---
## Examples
<div align="center">
<img src="assets/alignment_result.png">
</div>
Explore the following example notebooks to learn how to use **UniFace** effectively:
- [Face Detection](examples/face_detection.ipynb): Demonstrates how to perform face detection, draw bounding boxes, and landmarks on an image.
- [Face Alignment](examples/face_alignment.ipynb): Shows how to align faces using detected landmarks.
- [Age and Gender Detection](examples/age_gender.ipynb): Example for detecting age and gender from faces. (underdevelopment)
### 🚀 Initialize the RetinaFace Model
To use the RetinaFace model for face detection, initialize it with either custom or default configuration parameters.
#### Full Initialization (with custom parameters)
```python
from uniface import RetinaFace
from uniface.constants import RetinaFaceWeights
# Initialize RetinaFace with custom configuration
uniface_inference = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2, # Model name from enum
conf_thresh=0.5, # Confidence threshold for detections
pre_nms_topk=5000, # Number of top detections before NMS
nms_thresh=0.4, # IoU threshold for NMS
post_nms_topk=750, # Number of top detections after NMS
dynamic_size=False, # Whether to allow arbitrary input sizes
input_size=(640, 640) # Input image size (HxW)
)
```
#### Minimal Initialization (uses default parameters)
```python
from uniface import RetinaFace
# Initialize with default settings
uniface_inference = RetinaFace()
```
**Default Parameters:**
```python
model_name = RetinaFaceWeights.MNET_V2
conf_thresh = 0.5
pre_nms_topk = 5000
nms_thresh = 0.4
post_nms_topk = 750
dynamic_size = False
input_size = (640, 640)
```
### Run Inference
Inference on image:
```python
import cv2
from uniface.visualization import draw_detections
# Load an image
image_path = "assets/test.jpg"
original_image = cv2.imread(image_path)
# Perform inference
boxes, landmarks = uniface_inference.detect(original_image)
# boxes: [x_min, y_min, x_max, y_max, confidence]
# Visualize results
draw_detections(original_image, (boxes, landmarks), vis_threshold=0.6)
# Save the output image
output_path = "output.jpg"
cv2.imwrite(output_path, original_image)
print(f"Saved output image to {output_path}")
```
Inference on video:
```python
import cv2
from uniface.visualization import draw_detections
# Initialize the webcam
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Unable to access the webcam.")
exit()
while True:
# Capture a frame from the webcam
ret, frame = cap.read()
if not ret:
print("Error: Failed to read frame.")
break
# Perform inference
boxes, landmarks = uniface_inference.detect(frame)
# 'boxes' contains bounding box coordinates and confidence scores:
# Format: [x_min, y_min, x_max, y_max, confidence]
# Draw detections on the frame
draw_detections(frame, (boxes, landmarks), vis_threshold=0.6)
# Display the output
cv2.imshow("Webcam Inference", frame)
# Exit if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the webcam and close all OpenCV windows
cap.release()
cv2.destroyAllWindows()
```
---
### Evaluation results of available models on WiderFace
| RetinaFace Models | Easy | Medium | Hard |
| ------------------ | ---------------- | ---------------- | ---------------- |
| retinaface_mnet025 | 88.48% | 87.02% | 80.61% |
| retinaface_mnet050 | 89.42% | 87.97% | 82.40% |
| retinaface_mnet_v1 | 90.59% | 89.14% | 84.13% |
| retinaface_mnet_v2 | 91.70% | 91.03% | 86.60% |
| retinaface_r18 | 92.50% | 91.02% | 86.63% |
| retinaface_r34 | **94.16%** | **93.12%** | **88.90%** |
<div align="center">
<img src="assets/test_result.png">
</div>
## API Reference
### `RetinaFace` Class
#### Initialization
```python
from typings import Tuple
from uniface import RetinaFace
from uniface.constants import RetinaFaceWeights
RetinaFace(
model_name: RetinaFaceWeights,
conf_thresh: float = 0.5,
pre_nms_topk: int = 5000,
nms_thresh: float = 0.4,
post_nms_topk: int = 750,
dynamic_size: bool = False,
input_size: Tuple[int, int] = (640, 640)
)
```
**Parameters**:
- `model_name` _(RetinaFaceWeights)_: Enum value for model to use. Supported values:
- `MNET_025`, `MNET_050`, `MNET_V1`, `MNET_V2`, `RESNET18`, `RESNET34`
- `conf_thresh` _(float, default=0.5)_: Minimum confidence score for detections.
- `pre_nms_topk` _(int, default=5000)_: Max detections to keep before NMS.
- `nms_thresh` _(float, default=0.4)_: IoU threshold for Non-Maximum Suppression.
- `post_nms_topk` _(int, default=750)_: Max detections to keep after NMS.
- `dynamic_size` _(Optional[bool], default=False)_: Use dynamic input size.
- `input_size` _(Optional[Tuple[int, int]], default=(640, 640))_: Static input size for the model (width, height).
---
### `detect` Method
```python
detect(
image: np.ndarray,
max_num: int = 0,
metric: str = "default",
center_weight: float = 2.0
) -> Tuple[np.ndarray, np.ndarray]
```
**Description**:
Detects faces in the given image and returns bounding boxes and landmarks.
**Parameters**:
- `image` _(np.ndarray)_: Input image in BGR format.
- `max_num` _(int, default=0)_: Maximum number of faces to return. `0` means return all.
- `metric` _(str, default="default")_: Metric for prioritizing detections:
- `"default"`: Prioritize detections closer to the image center.
- `"max"`: Prioritize larger bounding box areas.
- `center_weight` _(float, default=2.0)_: Weight for prioritizing center-aligned faces.
**Returns**:
- `bounding_boxes` _(np.ndarray)_: Array of detections as `[x_min, y_min, x_max, y_max, confidence]`.
- `landmarks` _(np.ndarray)_: Array of landmarks as `[(x1, y1), ..., (x5, y5)]`.
---
### Visualization Utilities
#### `draw_detections`
```python
draw_detections(
image: np.ndarray,
detections: Tuple[np.ndarray, np.ndarray],
vis_threshold: float = 0.6
) -> None
```
**Description**:
Draws bounding boxes and landmarks on the given image.
**Parameters**:
- `image` _(np.ndarray)_: The input image in BGR format.
- `detections` _(Tuple[np.ndarray, np.ndarray])_: A tuple of bounding boxes and landmarks.
- `vis_threshold` _(float, default=0.6)_: Minimum confidence score for visualization.
---
## Contributing
We welcome contributions to enhance the library! Feel free to:
- Submit bug reports or feature requests.
- Fork the repository and create a pull request.
---
## License
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
---
## Acknowledgments
- Based on the RetinaFace model for face detection ([https://github.com/yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)).
- Inspired by InsightFace and other face detection projects.
---