mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 00:52:25 +00:00
c9f8215e28f0baf768ccdcb4451ea1e3fa01f15d
UniFace: All-in-One Face Analysis Library
UniFace is a lightweight, production-ready face analysis library built on ONNX Runtime. It provides high-performance face detection, recognition, landmark detection, and attribute analysis with hardware acceleration support across platforms.
Features
- High-Speed Face Detection: ONNX-optimized RetinaFace and SCRFD models
- Facial Landmark Detection: Accurate 106-point landmark localization
- Face Recognition: ArcFace, MobileFace, and SphereFace embeddings
- Attribute Analysis: Age, gender, and emotion detection
- Face Alignment: Precise alignment for downstream tasks
- Hardware Acceleration: CoreML (Apple Silicon), CUDA (NVIDIA), CPU fallback
- Simple API: Intuitive factory functions and clean interfaces
- Production-Ready: Type hints, comprehensive logging, PEP8 compliant
Installation
Quick Install (All Platforms)
pip install uniface
Platform-Specific Installation
macOS (Apple Silicon - M1/M2/M3/M4)
For optimal performance with CoreML acceleration (3-5x faster):
# Standard installation (CPU only)
pip install uniface
# With CoreML acceleration (recommended for M-series chips)
pip install uniface[silicon]
Verify CoreML is available:
import onnxruntime as ort
print(ort.get_available_providers())
# Should show: ['CoreMLExecutionProvider', 'CPUExecutionProvider']
Linux/Windows with NVIDIA GPU
# With CUDA acceleration
pip install uniface[gpu]
Requirements:
- CUDA 11.x or 12.x
- cuDNN 8.x
- See ONNX Runtime GPU requirements
CPU-Only (All Platforms)
pip install uniface
Install from Source
git clone https://github.com/yakhyo/uniface.git
cd uniface
pip install -e .
Quick Start
Face Detection
import cv2
from uniface import RetinaFace
# Initialize detector
detector = RetinaFace()
# Load image
image = cv2.imread("image.jpg")
# Detect faces
faces = detector.detect(image)
# Process results
for face in faces:
bbox = face['bbox'] # [x1, y1, x2, y2]
confidence = face['confidence']
landmarks = face['landmarks'] # 5-point landmarks
print(f"Face detected with confidence: {confidence:.2f}")
Face Recognition
from uniface import ArcFace, RetinaFace
from uniface import compute_similarity
# Initialize models
detector = RetinaFace()
recognizer = ArcFace()
# Detect and extract embeddings
faces1 = detector.detect(image1)
faces2 = detector.detect(image2)
embedding1 = recognizer.get_normalized_embedding(image1, faces1[0]['landmarks'])
embedding2 = recognizer.get_normalized_embedding(image2, faces2[0]['landmarks'])
# Compare faces
similarity = compute_similarity(embedding1, embedding2)
print(f"Similarity: {similarity:.4f}")
Facial Landmarks
from uniface import RetinaFace, Landmark106
detector = RetinaFace()
landmarker = Landmark106()
faces = detector.detect(image)
landmarks = landmarker.get_landmarks(image, faces[0]['bbox'])
# Returns 106 (x, y) landmark points
Age & Gender Detection
from uniface import RetinaFace, AgeGender
detector = RetinaFace()
age_gender = AgeGender()
faces = detector.detect(image)
gender, age = age_gender.predict(image, faces[0]['bbox'])
print(f"{gender}, {age} years old")
Documentation
- QUICKSTART.md - 5-minute getting started guide
- MODELS.md - Model zoo, benchmarks, and selection guide
- Examples - Jupyter notebooks with detailed examples
API Overview
Factory Functions (Recommended)
from uniface import create_detector, create_recognizer, create_landmarker
# Create detector with default settings
detector = create_detector('retinaface')
# Create with custom config
detector = create_detector(
'scrfd',
model_name='scrfd_10g_kps',
conf_thresh=0.8,
input_size=(640, 640)
)
# Recognition and landmarks
recognizer = create_recognizer('arcface')
landmarker = create_landmarker('2d106det')
Direct Model Instantiation
from uniface import RetinaFace, SCRFD, ArcFace, MobileFace
from uniface.constants import RetinaFaceWeights
# Detection
detector = RetinaFace(
model_name=RetinaFaceWeights.MNET_V2,
conf_thresh=0.5,
nms_thresh=0.4
)
# Recognition
recognizer = ArcFace() # Uses default weights
recognizer = MobileFace() # Lightweight alternative
High-Level Detection API
from uniface import detect_faces
# One-line face detection
faces = detect_faces(image, method='retinaface', conf_thresh=0.8)
Model Performance
Face Detection (WIDER FACE Dataset)
| Model | Easy | Medium | Hard | Use Case |
|---|---|---|---|---|
| retinaface_mnet025 | 88.48% | 87.02% | 80.61% | Mobile/Edge devices |
| retinaface_mnet_v2 | 91.70% | 91.03% | 86.60% | Balanced (recommended) |
| retinaface_r34 | 94.16% | 93.12% | 88.90% | High accuracy |
| scrfd_500m | 90.57% | 88.12% | 68.51% | Real-time applications |
| scrfd_10g | 95.16% | 93.87% | 83.05% | Best accuracy/speed |
Accuracy values from original papers: RetinaFace, SCRFD
Benchmark on your hardware:
python scripts/run_detection.py --image assets/test.jpg --iterations 100
See MODELS.md for detailed model information and selection guide.
Examples
Webcam Face Detection
import cv2
from uniface import RetinaFace
from uniface.visualization import draw_detections
detector = RetinaFace()
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
faces = detector.detect(frame)
# Extract data for visualization
bboxes = [f['bbox'] for f in faces]
scores = [f['confidence'] for f in faces]
landmarks = [f['landmarks'] for f in faces]
draw_detections(frame, bboxes, scores, landmarks, vis_threshold=0.6)
cv2.imshow("Face Detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
Face Search System
import numpy as np
from uniface import RetinaFace, ArcFace
detector = RetinaFace()
recognizer = ArcFace()
# Build face database
database = {}
for person_id, image_path in person_images.items():
image = cv2.imread(image_path)
faces = detector.detect(image)
if faces:
embedding = recognizer.get_normalized_embedding(
image, faces[0]['landmarks']
)
database[person_id] = embedding
# Search for a face
query_image = cv2.imread("query.jpg")
query_faces = detector.detect(query_image)
if query_faces:
query_embedding = recognizer.get_normalized_embedding(
query_image, query_faces[0]['landmarks']
)
# Find best match
best_match = None
best_similarity = -1
for person_id, db_embedding in database.items():
similarity = np.dot(query_embedding, db_embedding.T)[0][0]
if similarity > best_similarity:
best_similarity = similarity
best_match = person_id
print(f"Best match: {best_match} (similarity: {best_similarity:.4f})")
More examples in the examples/ directory.
Advanced Configuration
Custom ONNX Runtime Providers
from uniface.onnx_utils import get_available_providers, create_onnx_session
# Check available providers
providers = get_available_providers()
print(f"Available: {providers}")
# Force CPU-only execution
from uniface import RetinaFace
detector = RetinaFace()
# Internally uses create_onnx_session() which auto-selects best provider
Model Download and Caching
Models are automatically downloaded on first use and cached in ~/.uniface/models/.
from uniface.model_store import verify_model_weights
from uniface.constants import RetinaFaceWeights
# Manually download and verify a model
model_path = verify_model_weights(
RetinaFaceWeights.MNET_V2,
root='./custom_models' # Custom cache directory
)
Logging Configuration
from uniface import Logger
import logging
# Set logging level
Logger.setLevel(logging.DEBUG) # DEBUG, INFO, WARNING, ERROR
# Disable logging
Logger.setLevel(logging.CRITICAL)
Testing
# Run all tests
pytest
# Run with coverage
pytest --cov=uniface --cov-report=html
# Run specific test file
pytest tests/test_retinaface.py -v
Development
Setup Development Environment
git clone https://github.com/yakhyo/uniface.git
cd uniface
# Install in editable mode with dev dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Format code
black uniface/
isort uniface/
Project Structure
uniface/
├── uniface/
│ ├── detection/ # Face detection models
│ ├── recognition/ # Face recognition models
│ ├── landmark/ # Landmark detection
│ ├── attribute/ # Age, gender, emotion
│ ├── onnx_utils.py # ONNX Runtime utilities
│ ├── model_store.py # Model download & caching
│ └── visualization.py # Drawing utilities
├── tests/ # Unit tests
├── examples/ # Example notebooks
└── scripts/ # Utility scripts
References
Model Training & Architectures
- RetinaFace Training: yakhyo/retinaface-pytorch - PyTorch implementation and training code
- Face Recognition Training: yakhyo/face-recognition - ArcFace, MobileFace, SphereFace training code
- InsightFace: deepinsight/insightface - Model architectures and pretrained weights
Papers
- RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild
- SCRFD: Sample and Computation Redistribution for Efficient Face Detection
- ArcFace: Additive Angular Margin Loss for Deep Face Recognition
Contributing
Contributions are welcome! Please open an issue or submit a pull request on GitHub.
Description
UniFace: A Comprehensive Library for Face Detection, Recognition, Landmark Analysis, Face Parsing, Gaze Estimation, Age, and Gender Detection
age-gender-estimationface-alignmentface-analysisface-detectionface-emotion-detectionface-landmark-detectionface-parsingface-recognitiongaze-estimationheadpose-estimation
Readme
MIT
145 MiB
Languages
Python
100%

