Files
uniface/uniface/face_utils.py

171 lines
5.5 KiB
Python

# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
import cv2
import numpy as np
from skimage.transform import SimilarityTransform
from typing import Tuple
__all__ = ["face_alignment", "compute_similarity", "bbox_center_alignment", "transform_points_2d"]
# Reference alignment for facial landmarks (ArcFace)
reference_alignment: np.ndarray = np.array(
[
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041]
],
dtype=np.float32
)
def estimate_norm(landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarray, np.ndarray]:
"""
Estimate the normalization transformation matrix for facial landmarks.
Args:
landmark (np.ndarray): Array of shape (5, 2) representing the coordinates of the facial landmarks.
image_size (int, optional): The size of the output image. Default is 112.
Returns:
np.ndarray: The 2x3 transformation matrix for aligning the landmarks.
np.ndarray: The 2x3 inverse transformation matrix for aligning the landmarks.
Raises:
AssertionError: If the input landmark array does not have the shape (5, 2)
or if image_size is not a multiple of 112 or 128.
"""
assert landmark.shape == (5, 2), "Landmark array must have shape (5, 2)."
assert image_size % 112 == 0 or image_size % 128 == 0, "Image size must be a multiple of 112 or 128."
if image_size % 112 == 0:
ratio = float(image_size) / 112.0
diff_x = 0.0
else:
ratio = float(image_size) / 128.0
diff_x = 8.0 * ratio
# Adjust reference alignment based on ratio and diff_x
alignment = reference_alignment * ratio
alignment[:, 0] += diff_x
# Compute the transformation matrix
transform = SimilarityTransform()
transform.estimate(landmark, alignment)
matrix = transform.params[0:2, :]
inverse_matrix = np.linalg.inv(transform.params)[0:2, :]
return matrix, inverse_matrix
def face_alignment(image: np.ndarray, landmark: np.ndarray, image_size: int = 112) -> Tuple[np.ndarray, np.ndarray]:
"""
Align the face in the input image based on the given facial landmarks.
Args:
image (np.ndarray): Input image as a NumPy array.
landmark (np.ndarray): Array of shape (5, 2) representing the coordinates of the facial landmarks.
image_size (int, optional): The size of the aligned output image. Default is 112.
Returns:
np.ndarray: The aligned face as a NumPy array.
np.ndarray: The 2x3 transformation matrix used for alignment.
"""
# Get the transformation matrix
M, M_inv = estimate_norm(landmark, image_size)
# Warp the input image to align the face
warped = cv2.warpAffine(image, M, (image_size, image_size), borderValue=0.0)
return warped, M_inv
def compute_similarity(feat1: np.ndarray, feat2: np.ndarray, normalized: bool = False) -> np.float32:
"""Computing Similarity between two faces.
Args:
feat1 (np.ndarray): First embedding.
feat2 (np.ndarray): Second embedding.
normalized (bool): Set True if the embeddings are already L2 normalized.
Returns:
np.float32: Cosine similarity.
"""
feat1 = feat1.ravel()
feat2 = feat2.ravel()
if normalized:
return np.dot(feat1, feat2)
else:
return np.dot(feat1, feat2) / (np.linalg.norm(feat1) * np.linalg.norm(feat2) + 1e-5)
def bbox_center_alignment(image, center, output_size, scale, rotation):
"""
Apply center-based alignment, scaling, and rotation to an image.
Args:
image (np.ndarray): Input image.
center (Tuple[float, float]): Center point (e.g., face center from bbox).
output_size (int): Desired output image size (square).
scale (float): Scaling factor to zoom in/out.
rotation (float): Rotation angle in degrees (clockwise).
Returns:
cropped (np.ndarray): Aligned and cropped image.
M (np.ndarray): 2x3 affine transform matrix used.
"""
# Convert rotation from degrees to radians
rot = float(rotation) * np.pi / 180.0
# Scale the image
t1 = SimilarityTransform(scale=scale)
# Translate the center point to the origin (after scaling)
cx = center[0] * scale
cy = center[1] * scale
t2 = SimilarityTransform(translation=(-1 * cx, -1 * cy))
# Apply rotation around origin (center of face)
t3 = SimilarityTransform(rotation=rot)
# Translate origin to center of output image
t4 = SimilarityTransform(translation=(output_size / 2, output_size / 2))
# Combine all transformations in order: scale → center shift → rotate → recentralize
t = t1 + t2 + t3 + t4
# Extract 2x3 affine matrix
M = t.params[0:2]
# Warp the image using OpenCV
cropped = cv2.warpAffine(image, M, (output_size, output_size), borderValue=0.0)
return cropped, M
def transform_points_2d(points: np.ndarray, transform: np.ndarray) -> np.ndarray:
"""
Apply a 2D affine transformation to an array of 2D points.
Args:
points (np.ndarray): An (N, 2) array of 2D points.
transform (np.ndarray): A (2, 3) affine transformation matrix.
Returns:
np.ndarray: Transformed (N, 2) array of points.
"""
transformed = np.zeros_like(points, dtype=np.float32)
for i in range(points.shape[0]):
point = np.array([points[i, 0], points[i, 1], 1.0], dtype=np.float32)
result = np.dot(transform, point)
transformed[i] = result[:2]
return transformed