mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 17:12:28 +00:00
* chore: Rename scripts to tools folder and unify argument parser * refactor: Centralize dataclasses in types.py and add __call__ to all models - Move Face and result dataclasses to uniface/types.py - Add GazeResult, SpoofingResult, EmotionResult (frozen=True) - Add __call__ to BaseDetector, BaseRecognizer, BaseLandmarker - Add __repr__ to all dataclasses - Replace print() with Logger in onnx_utils.py - Update tools and docs to use new dataclass return types - Add test_types.py with comprehensive dataclass testschore: Rename files under tools folder and unitify argument parser for them
106 lines
3.2 KiB
Python
106 lines
3.2 KiB
Python
# Copyright 2025 Yakhyokhuja Valikhujaev
|
|
# Author: Yakhyokhuja Valikhujaev
|
|
# GitHub: https://github.com/yakhyo
|
|
|
|
"""Batch face detection on a folder of images.
|
|
|
|
Usage:
|
|
python tools/batch_process.py --input images/ --output results/
|
|
"""
|
|
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
from tqdm import tqdm
|
|
|
|
from uniface import SCRFD, RetinaFace
|
|
from uniface.visualization import draw_detections
|
|
|
|
|
|
def get_image_files(input_dir: Path, extensions: tuple) -> list:
|
|
files = []
|
|
for ext in extensions:
|
|
files.extend(input_dir.glob(f'*.{ext}'))
|
|
files.extend(input_dir.glob(f'*.{ext.upper()}'))
|
|
return sorted(files)
|
|
|
|
|
|
def process_image(detector, image_path: Path, output_path: Path, threshold: float) -> int:
|
|
"""Process single image. Returns face count or -1 on error."""
|
|
image = cv2.imread(str(image_path))
|
|
if image is None:
|
|
return -1
|
|
|
|
faces = detector.detect(image)
|
|
|
|
# unpack face data for visualization
|
|
bboxes = [f.bbox for f in faces]
|
|
scores = [f.confidence for f in faces]
|
|
landmarks = [f.landmarks for f in faces]
|
|
draw_detections(
|
|
image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
|
|
)
|
|
|
|
cv2.putText(
|
|
image,
|
|
f'Faces: {len(faces)}',
|
|
(10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
1,
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
cv2.imwrite(str(output_path), image)
|
|
|
|
return len(faces)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Batch process images with face detection')
|
|
parser.add_argument('--input', type=str, required=True, help='Input directory')
|
|
parser.add_argument('--output', type=str, required=True, help='Output directory')
|
|
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
|
|
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
|
|
parser.add_argument('--extensions', type=str, default='jpg,jpeg,png,bmp', help='Image extensions')
|
|
args = parser.parse_args()
|
|
|
|
input_path = Path(args.input)
|
|
output_path = Path(args.output)
|
|
|
|
if not input_path.exists():
|
|
print(f"Error: Input directory '{args.input}' does not exist")
|
|
return
|
|
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
extensions = tuple(ext.strip() for ext in args.extensions.split(','))
|
|
image_files = get_image_files(input_path, extensions)
|
|
|
|
if not image_files:
|
|
print(f'No images found with extensions {extensions}')
|
|
return
|
|
|
|
print(f'Found {len(image_files)} images')
|
|
|
|
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
|
|
|
|
success, errors, total_faces = 0, 0, 0
|
|
|
|
for img_path in tqdm(image_files, desc='Processing', unit='img'):
|
|
out_path = output_path / f'{img_path.stem}_detected{img_path.suffix}'
|
|
result = process_image(detector, img_path, out_path, args.threshold)
|
|
|
|
if result >= 0:
|
|
success += 1
|
|
total_faces += result
|
|
else:
|
|
errors += 1
|
|
print(f'\nFailed: {img_path.name}')
|
|
|
|
print(f'\nDone! {success} processed, {errors} errors, {total_faces} faces total')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|