Files
uniface/tools/detection.py
Yakhyokhuja Valikhujaev cbcd89b167 feat: Common result dataclasses and refactoring several methods. (#50)
* chore: Rename scripts to tools folder and unify argument parser

* refactor: Centralize dataclasses in types.py and add __call__ to all models

- Move Face and result dataclasses to uniface/types.py
- Add GazeResult, SpoofingResult, EmotionResult (frozen=True)
- Add __call__ to BaseDetector, BaseRecognizer, BaseLandmarker
- Add __repr__ to all dataclasses
- Replace print() with Logger in onnx_utils.py
- Update tools and docs to use new dataclass return types
- Add test_types.py with comprehensive dataclass testschore: Rename files under tools folder and unitify argument parser for them
2025-12-30 17:05:24 +09:00

197 lines
6.2 KiB
Python

# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
"""Face detection on image, video, or webcam.
Usage:
python tools/detection.py --source path/to/image.jpg
python tools/detection.py --source path/to/video.mp4
python tools/detection.py --source 0 # webcam
"""
from __future__ import annotations
import argparse
import os
from pathlib import Path
import cv2
from uniface.detection import SCRFD, RetinaFace, YOLOv5Face
from uniface.visualization import draw_detections
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.webp', '.tiff'}
VIDEO_EXTENSIONS = {'.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv'}
def get_source_type(source: str) -> str:
"""Determine if source is image, video, or camera."""
if source.isdigit():
return 'camera'
path = Path(source)
suffix = path.suffix.lower()
if suffix in IMAGE_EXTENSIONS:
return 'image'
elif suffix in VIDEO_EXTENSIONS:
return 'video'
else:
return 'unknown'
def process_image(detector, image_path: str, threshold: float = 0.6, save_dir: str = 'outputs'):
"""Process a single image."""
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
if faces:
bboxes = [face.bbox for face in faces]
scores = [face.confidence for face in faces]
landmarks = [face.landmarks for face in faces]
draw_detections(image, bboxes, scores, landmarks, vis_threshold=threshold)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{os.path.splitext(os.path.basename(image_path))[0]}_out.jpg')
cv2.imwrite(output_path, image)
print(f'Detected {len(faces)} face(s). Output saved: {output_path}')
def process_video(detector, video_path: str, threshold: float = 0.6, save_dir: str = 'outputs'):
"""Process a video file."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Cannot open video file '{video_path}'")
return
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(video_path).stem}_out.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
print(f'Processing video: {video_path} ({total_frames} frames)')
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
faces = detector.detect(frame)
bboxes = [f.bbox for f in faces]
scores = [f.confidence for f in faces]
landmarks = [f.landmarks for f in faces]
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=threshold,
draw_score=True,
fancy_bbox=True,
)
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
out.write(frame)
# Show progress
if frame_count % 100 == 0:
print(f' Processed {frame_count}/{total_frames} frames...')
cap.release()
out.release()
print(f'Done! Output saved: {output_path}')
def run_camera(detector, camera_id: int = 0, threshold: float = 0.6):
"""Run real-time detection on webcam."""
cap = cv2.VideoCapture(camera_id)
if not cap.isOpened():
print(f'Cannot open camera {camera_id}')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1) # mirror for natural interaction
if not ret:
break
faces = detector.detect(frame)
bboxes = [f.bbox for f in faces]
scores = [f.confidence for f in faces]
landmarks = [f.landmarks for f in faces]
draw_detections(
image=frame,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=threshold,
draw_score=True,
fancy_bbox=True,
)
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('Face Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Run face detection')
parser.add_argument('--source', type=str, required=True, help='Image/video path or camera ID (0, 1, ...)')
parser.add_argument('--method', type=str, default='retinaface', choices=['retinaface', 'scrfd', 'yolov5face'])
parser.add_argument('--threshold', type=float, default=0.25, help='Visualization threshold')
parser.add_argument('--save-dir', type=str, default='outputs', help='Output directory')
args = parser.parse_args()
# Initialize detector
if args.method == 'retinaface':
detector = RetinaFace()
elif args.method == 'scrfd':
detector = SCRFD()
else:
from uniface.constants import YOLOv5FaceWeights
detector = YOLOv5Face(model_name=YOLOv5FaceWeights.YOLOV5M)
# Determine source type and process
source_type = get_source_type(args.source)
if source_type == 'camera':
run_camera(detector, int(args.source), args.threshold)
elif source_type == 'image':
if not os.path.exists(args.source):
print(f'Error: Image not found: {args.source}')
return
process_image(detector, args.source, args.threshold, args.save_dir)
elif source_type == 'video':
if not os.path.exists(args.source):
print(f'Error: Video not found: {args.source}')
return
process_video(detector, args.source, args.threshold, args.save_dir)
else:
print(f"Error: Unknown source type for '{args.source}'")
print('Supported formats: images (.jpg, .png, ...), videos (.mp4, .avi, ...), or camera ID (0, 1, ...)')
if __name__ == '__main__':
main()