mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
* chore: Rename scripts to tools folder and unify argument parser * refactor: Centralize dataclasses in types.py and add __call__ to all models - Move Face and result dataclasses to uniface/types.py - Add GazeResult, SpoofingResult, EmotionResult (frozen=True) - Add __call__ to BaseDetector, BaseRecognizer, BaseLandmarker - Add __repr__ to all dataclasses - Replace print() with Logger in onnx_utils.py - Update tools and docs to use new dataclass return types - Add test_types.py with comprehensive dataclass testschore: Rename files under tools folder and unitify argument parser for them
282 lines
8.1 KiB
Python
282 lines
8.1 KiB
Python
# Copyright 2025 Yakhyokhuja Valikhujaev
|
|
# Author: Yakhyokhuja Valikhujaev
|
|
# GitHub: https://github.com/yakhyo
|
|
|
|
"""Face anonymization/blurring for privacy.
|
|
|
|
Usage:
|
|
python tools/face_anonymize.py --source path/to/image.jpg --method pixelate
|
|
python tools/face_anonymize.py --source path/to/video.mp4 --method gaussian
|
|
python tools/face_anonymize.py --source 0 --method pixelate # webcam
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
|
|
from uniface import RetinaFace
|
|
from uniface.privacy import BlurFace
|
|
|
|
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.webp', '.tiff'}
|
|
VIDEO_EXTENSIONS = {'.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv'}
|
|
|
|
|
|
def get_source_type(source: str) -> str:
|
|
"""Determine if source is image, video, or camera."""
|
|
if source.isdigit():
|
|
return 'camera'
|
|
path = Path(source)
|
|
suffix = path.suffix.lower()
|
|
if suffix in IMAGE_EXTENSIONS:
|
|
return 'image'
|
|
elif suffix in VIDEO_EXTENSIONS:
|
|
return 'video'
|
|
else:
|
|
return 'unknown'
|
|
|
|
|
|
def process_image(
|
|
detector,
|
|
blurrer: BlurFace,
|
|
image_path: str,
|
|
save_dir: str = 'outputs',
|
|
show_detections: bool = False,
|
|
):
|
|
"""Process a single image."""
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
faces = detector.detect(image)
|
|
print(f'Detected {len(faces)} face(s)')
|
|
|
|
if show_detections and faces:
|
|
from uniface.visualization import draw_detections
|
|
|
|
preview = image.copy()
|
|
bboxes = [face.bbox for face in faces]
|
|
scores = [face.confidence for face in faces]
|
|
landmarks = [face.landmarks for face in faces]
|
|
draw_detections(preview, bboxes, scores, landmarks)
|
|
|
|
cv2.imshow('Detections (Press any key to continue)', preview)
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
|
|
if faces:
|
|
anonymized = blurrer.anonymize(image, faces)
|
|
else:
|
|
anonymized = image
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
basename = os.path.splitext(os.path.basename(image_path))[0]
|
|
output_path = os.path.join(save_dir, f'{basename}_anonymized.jpg')
|
|
cv2.imwrite(output_path, anonymized)
|
|
print(f'Output saved: {output_path}')
|
|
|
|
|
|
def process_video(
|
|
detector,
|
|
blurrer: BlurFace,
|
|
video_path: str,
|
|
save_dir: str = 'outputs',
|
|
):
|
|
"""Process a video file."""
|
|
cap = cv2.VideoCapture(video_path)
|
|
if not cap.isOpened():
|
|
print(f"Error: Cannot open video file '{video_path}'")
|
|
return
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f'{Path(video_path).stem}_anonymized.mp4')
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
|
|
|
print(f'Processing video: {video_path} ({total_frames} frames)')
|
|
frame_count = 0
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame_count += 1
|
|
faces = detector.detect(frame)
|
|
|
|
if faces:
|
|
frame = blurrer.anonymize(frame, faces, inplace=True)
|
|
|
|
out.write(frame)
|
|
|
|
if frame_count % 100 == 0:
|
|
print(f' Processed {frame_count}/{total_frames} frames...')
|
|
|
|
cap.release()
|
|
out.release()
|
|
print(f'Done! Output saved: {output_path}')
|
|
|
|
|
|
def run_camera(detector, blurrer: BlurFace, camera_id: int = 0):
|
|
"""Run real-time anonymization on webcam."""
|
|
cap = cv2.VideoCapture(camera_id)
|
|
if not cap.isOpened():
|
|
print(f'Cannot open camera {camera_id}')
|
|
return
|
|
|
|
print("Press 'q' to quit")
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
frame = cv2.flip(frame, 1)
|
|
if not ret:
|
|
break
|
|
|
|
faces = detector.detect(frame)
|
|
if faces:
|
|
frame = blurrer.anonymize(frame, faces, inplace=True)
|
|
|
|
cv2.putText(
|
|
frame,
|
|
f'Faces blurred: {len(faces)} | Method: {blurrer.method}',
|
|
(10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.7,
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
|
|
cv2.imshow('Face Anonymization (Press q to quit)', frame)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description='Face anonymization using various blur methods',
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
epilog="""
|
|
Examples:
|
|
# Anonymize image with pixelation (default)
|
|
python run_anonymization.py --source photo.jpg
|
|
|
|
# Use Gaussian blur with custom strength
|
|
python run_anonymization.py --source photo.jpg --method gaussian --blur-strength 5.0
|
|
|
|
# Real-time webcam anonymization
|
|
python run_anonymization.py --source 0 --method pixelate
|
|
|
|
# Black boxes for maximum privacy
|
|
python run_anonymization.py --source photo.jpg --method blackout
|
|
|
|
# Custom pixelation intensity
|
|
python run_anonymization.py --source photo.jpg --method pixelate --pixel-blocks 5
|
|
""",
|
|
)
|
|
|
|
# Input/output
|
|
parser.add_argument('--source', type=str, required=True, help='Image/video path or camera ID (0, 1, ...)')
|
|
parser.add_argument('--save-dir', type=str, default='outputs', help='Output directory')
|
|
|
|
# Blur method
|
|
parser.add_argument(
|
|
'--method',
|
|
type=str,
|
|
default='pixelate',
|
|
choices=['gaussian', 'pixelate', 'blackout', 'elliptical', 'median'],
|
|
help='Blur method (default: pixelate)',
|
|
)
|
|
|
|
# Method-specific parameters
|
|
parser.add_argument(
|
|
'--blur-strength',
|
|
type=float,
|
|
default=3.0,
|
|
help='Blur strength for gaussian/elliptical/median (default: 3.0)',
|
|
)
|
|
parser.add_argument(
|
|
'--pixel-blocks',
|
|
type=int,
|
|
default=20,
|
|
help='Number of pixel blocks for pixelate (default: 20, lower=more pixelated)',
|
|
)
|
|
parser.add_argument(
|
|
'--color',
|
|
type=str,
|
|
default='0,0,0',
|
|
help='Fill color for blackout as R,G,B (default: 0,0,0 for black)',
|
|
)
|
|
parser.add_argument('--margin', type=int, default=20, help='Margin for elliptical blur (default: 20)')
|
|
|
|
# Detection
|
|
parser.add_argument(
|
|
'--confidence-threshold',
|
|
type=float,
|
|
default=0.5,
|
|
help='Detection confidence threshold (default: 0.5)',
|
|
)
|
|
|
|
# Visualization
|
|
parser.add_argument(
|
|
'--show-detections',
|
|
action='store_true',
|
|
help='Show detection boxes before blurring (image mode only)',
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Parse color
|
|
color_values = [int(x) for x in args.color.split(',')]
|
|
if len(color_values) != 3:
|
|
parser.error('--color must be in format R,G,B (e.g., 0,0,0)')
|
|
color = tuple(color_values)
|
|
|
|
# Initialize detector
|
|
print(f'Initializing face detector (confidence_threshold={args.confidence_threshold})...')
|
|
detector = RetinaFace(confidence_threshold=args.confidence_threshold)
|
|
|
|
# Initialize blurrer
|
|
print(f'Initializing blur method: {args.method}')
|
|
blurrer = BlurFace(
|
|
method=args.method,
|
|
blur_strength=args.blur_strength,
|
|
pixel_blocks=args.pixel_blocks,
|
|
color=color,
|
|
margin=args.margin,
|
|
)
|
|
|
|
source_type = get_source_type(args.source)
|
|
|
|
if source_type == 'camera':
|
|
run_camera(detector, blurrer, int(args.source))
|
|
elif source_type == 'image':
|
|
if not os.path.exists(args.source):
|
|
print(f'Error: Image not found: {args.source}')
|
|
return
|
|
process_image(detector, blurrer, args.source, args.save_dir, args.show_detections)
|
|
elif source_type == 'video':
|
|
if not os.path.exists(args.source):
|
|
print(f'Error: Video not found: {args.source}')
|
|
return
|
|
process_video(detector, blurrer, args.source, args.save_dir)
|
|
else:
|
|
print(f"Error: Unknown source type for '{args.source}'")
|
|
print('Supported formats: images (.jpg, .png, ...), videos (.mp4, .avi, ...), or camera ID (0, 1, ...)')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|