mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
* chore: Rename scripts to tools folder and unify argument parser * refactor: Centralize dataclasses in types.py and add __call__ to all models - Move Face and result dataclasses to uniface/types.py - Add GazeResult, SpoofingResult, EmotionResult (frozen=True) - Add __call__ to BaseDetector, BaseRecognizer, BaseLandmarker - Add __repr__ to all dataclasses - Replace print() with Logger in onnx_utils.py - Update tools and docs to use new dataclass return types - Add test_types.py with comprehensive dataclass testschore: Rename files under tools folder and unitify argument parser for them
251 lines
8.2 KiB
Python
251 lines
8.2 KiB
Python
# Copyright 2025 Yakhyokhuja Valikhujaev
|
|
# Author: Yakhyokhuja Valikhujaev
|
|
# GitHub: https://github.com/yakhyo
|
|
|
|
"""Face parsing on detected faces.
|
|
|
|
Usage:
|
|
python tools/face_parsing.py --source path/to/image.jpg
|
|
python tools/face_parsing.py --source path/to/video.mp4
|
|
python tools/face_parsing.py --source 0 # webcam
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from uniface import RetinaFace
|
|
from uniface.constants import ParsingWeights
|
|
from uniface.parsing import BiSeNet
|
|
from uniface.visualization import vis_parsing_maps
|
|
|
|
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.webp', '.tiff'}
|
|
VIDEO_EXTENSIONS = {'.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv'}
|
|
|
|
|
|
def get_source_type(source: str) -> str:
|
|
"""Determine if source is image, video, or camera."""
|
|
if source.isdigit():
|
|
return 'camera'
|
|
path = Path(source)
|
|
suffix = path.suffix.lower()
|
|
if suffix in IMAGE_EXTENSIONS:
|
|
return 'image'
|
|
elif suffix in VIDEO_EXTENSIONS:
|
|
return 'video'
|
|
else:
|
|
return 'unknown'
|
|
|
|
|
|
def expand_bbox(
|
|
bbox: np.ndarray,
|
|
image_shape: tuple[int, int],
|
|
expand_ratio: float = 0.2,
|
|
expand_top_ratio: float = 0.4,
|
|
) -> tuple[int, int, int, int]:
|
|
"""
|
|
Expand bounding box to include full head region for face parsing.
|
|
|
|
Face detection typically returns tight face boxes, but face parsing
|
|
requires the full head including hair, ears, and neck.
|
|
|
|
Args:
|
|
bbox: Original bounding box [x1, y1, x2, y2].
|
|
image_shape: Image dimensions as (height, width).
|
|
expand_ratio: Expansion ratio for left, right, and bottom (default: 0.2 = 20%).
|
|
expand_top_ratio: Expansion ratio for top to capture hair/forehead (default: 0.4 = 40%).
|
|
|
|
Returns:
|
|
Tuple[int, int, int, int]: Expanded bbox (x1, y1, x2, y2) clamped to image bounds.
|
|
"""
|
|
x1, y1, x2, y2 = map(int, bbox[:4])
|
|
height, width = image_shape[:2]
|
|
|
|
face_width = x2 - x1
|
|
face_height = y2 - y1
|
|
|
|
expand_x = int(face_width * expand_ratio)
|
|
expand_y_bottom = int(face_height * expand_ratio)
|
|
expand_y_top = int(face_height * expand_top_ratio)
|
|
|
|
new_x1 = max(0, x1 - expand_x)
|
|
new_y1 = max(0, y1 - expand_y_top)
|
|
new_x2 = min(width, x2 + expand_x)
|
|
new_y2 = min(height, y2 + expand_y_bottom)
|
|
|
|
return new_x1, new_y1, new_x2, new_y2
|
|
|
|
|
|
def process_image(detector, parser, image_path: str, save_dir: str = 'outputs', expand_ratio: float = 0.2):
|
|
"""Process a single image."""
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
faces = detector.detect(image)
|
|
print(f'Detected {len(faces)} face(s)')
|
|
|
|
result_image = image.copy()
|
|
|
|
for i, face in enumerate(faces):
|
|
x1, y1, x2, y2 = expand_bbox(face.bbox, image.shape, expand_ratio=expand_ratio)
|
|
face_crop = image[y1:y2, x1:x2]
|
|
|
|
if face_crop.size == 0:
|
|
continue
|
|
|
|
mask = parser.parse(face_crop)
|
|
print(f' Face {i + 1}: parsed with {len(set(mask.flatten()))} unique classes')
|
|
|
|
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
|
|
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
|
|
|
|
result_image[y1:y2, x1:x2] = vis_result
|
|
cv2.rectangle(result_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_parsing.jpg')
|
|
cv2.imwrite(output_path, result_image)
|
|
print(f'Output saved: {output_path}')
|
|
|
|
|
|
def process_video(detector, parser, video_path: str, save_dir: str = 'outputs', expand_ratio: float = 0.2):
|
|
"""Process a video file."""
|
|
cap = cv2.VideoCapture(video_path)
|
|
if not cap.isOpened():
|
|
print(f"Error: Cannot open video file '{video_path}'")
|
|
return
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f'{Path(video_path).stem}_parsing.mp4')
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
|
|
|
print(f'Processing video: {video_path} ({total_frames} frames)')
|
|
frame_count = 0
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame_count += 1
|
|
faces = detector.detect(frame)
|
|
|
|
for face in faces:
|
|
x1, y1, x2, y2 = expand_bbox(face.bbox, frame.shape, expand_ratio=expand_ratio)
|
|
face_crop = frame[y1:y2, x1:x2]
|
|
|
|
if face_crop.size == 0:
|
|
continue
|
|
|
|
mask = parser.parse(face_crop)
|
|
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
|
|
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
|
|
|
|
frame[y1:y2, x1:x2] = vis_result
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
|
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
out.write(frame)
|
|
|
|
if frame_count % 100 == 0:
|
|
print(f' Processed {frame_count}/{total_frames} frames...')
|
|
|
|
cap.release()
|
|
out.release()
|
|
print(f'Done! Output saved: {output_path}')
|
|
|
|
|
|
def run_camera(detector, parser, camera_id: int = 0, expand_ratio: float = 0.2):
|
|
"""Run real-time detection on webcam."""
|
|
cap = cv2.VideoCapture(camera_id)
|
|
if not cap.isOpened():
|
|
print(f'Cannot open camera {camera_id}')
|
|
return
|
|
|
|
print("Press 'q' to quit")
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame = cv2.flip(frame, 1)
|
|
faces = detector.detect(frame)
|
|
|
|
for face in faces:
|
|
x1, y1, x2, y2 = expand_bbox(face.bbox, frame.shape, expand_ratio=expand_ratio)
|
|
face_crop = frame[y1:y2, x1:x2]
|
|
|
|
if face_crop.size == 0:
|
|
continue
|
|
|
|
mask = parser.parse(face_crop)
|
|
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
|
|
vis_result = vis_parsing_maps(face_crop_rgb, mask, save_image=False)
|
|
|
|
frame[y1:y2, x1:x2] = vis_result
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
|
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
cv2.imshow('Face Parsing', frame)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
def main():
|
|
parser_arg = argparse.ArgumentParser(description='Run face parsing')
|
|
parser_arg.add_argument('--source', type=str, required=True, help='Image/video path or camera ID (0, 1, ...)')
|
|
parser_arg.add_argument('--save-dir', type=str, default='outputs', help='Output directory')
|
|
parser_arg.add_argument(
|
|
'--model', type=str, default=ParsingWeights.RESNET18, choices=[ParsingWeights.RESNET18, ParsingWeights.RESNET34]
|
|
)
|
|
parser_arg.add_argument(
|
|
'--expand-ratio',
|
|
type=float,
|
|
default=0.2,
|
|
help='Bbox expansion ratio for full head coverage (default: 0.2 = 20%%)',
|
|
)
|
|
args = parser_arg.parse_args()
|
|
|
|
detector = RetinaFace()
|
|
parser = BiSeNet(model_name=ParsingWeights.RESNET34)
|
|
|
|
source_type = get_source_type(args.source)
|
|
|
|
if source_type == 'camera':
|
|
run_camera(detector, parser, int(args.source), expand_ratio=args.expand_ratio)
|
|
elif source_type == 'image':
|
|
if not os.path.exists(args.source):
|
|
print(f'Error: Image not found: {args.source}')
|
|
return
|
|
process_image(detector, parser, args.source, args.save_dir, expand_ratio=args.expand_ratio)
|
|
elif source_type == 'video':
|
|
if not os.path.exists(args.source):
|
|
print(f'Error: Video not found: {args.source}')
|
|
return
|
|
process_video(detector, parser, args.source, args.save_dir, expand_ratio=args.expand_ratio)
|
|
else:
|
|
print(f"Error: Unknown source type for '{args.source}'")
|
|
print('Supported formats: images (.jpg, .png, ...), videos (.mp4, .avi, ...), or camera ID (0, 1, ...)')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|