mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
* chore: Rename scripts to tools folder and unify argument parser * refactor: Centralize dataclasses in types.py and add __call__ to all models - Move Face and result dataclasses to uniface/types.py - Add GazeResult, SpoofingResult, EmotionResult (frozen=True) - Add __call__ to BaseDetector, BaseRecognizer, BaseLandmarker - Add __repr__ to all dataclasses - Replace print() with Logger in onnx_utils.py - Update tools and docs to use new dataclass return types - Add test_types.py with comprehensive dataclass testschore: Rename files under tools folder and unitify argument parser for them
191 lines
6.2 KiB
Python
191 lines
6.2 KiB
Python
# Copyright 2025 Yakhyokhuja Valikhujaev
|
|
# Author: Yakhyokhuja Valikhujaev
|
|
# GitHub: https://github.com/yakhyo
|
|
|
|
"""Real-time face search: match faces against a reference image.
|
|
|
|
Usage:
|
|
python tools/face_search.py --reference person.jpg --source 0 # webcam
|
|
python tools/face_search.py --reference person.jpg --source video.mp4
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from uniface.detection import SCRFD, RetinaFace
|
|
from uniface.face_utils import compute_similarity
|
|
from uniface.recognition import ArcFace, MobileFace, SphereFace
|
|
|
|
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.webp', '.tiff'}
|
|
VIDEO_EXTENSIONS = {'.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv'}
|
|
|
|
|
|
def get_source_type(source: str) -> str:
|
|
"""Determine if source is image, video, or camera."""
|
|
if source.isdigit():
|
|
return 'camera'
|
|
path = Path(source)
|
|
suffix = path.suffix.lower()
|
|
if suffix in IMAGE_EXTENSIONS:
|
|
return 'image'
|
|
elif suffix in VIDEO_EXTENSIONS:
|
|
return 'video'
|
|
else:
|
|
return 'unknown'
|
|
|
|
|
|
def get_recognizer(name: str):
|
|
"""Get recognizer by name."""
|
|
if name == 'arcface':
|
|
return ArcFace()
|
|
elif name == 'mobileface':
|
|
return MobileFace()
|
|
else:
|
|
return SphereFace()
|
|
|
|
|
|
def extract_reference_embedding(detector, recognizer, image_path: str) -> np.ndarray:
|
|
"""Extract embedding from reference image."""
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
raise RuntimeError(f'Failed to load image: {image_path}')
|
|
|
|
faces = detector.detect(image)
|
|
if not faces:
|
|
raise RuntimeError('No faces found in reference image.')
|
|
|
|
landmarks = faces[0].landmarks
|
|
return recognizer.get_normalized_embedding(image, landmarks)
|
|
|
|
|
|
def process_frame(frame, detector, recognizer, ref_embedding: np.ndarray, threshold: float = 0.4):
|
|
"""Process a single frame and return annotated frame."""
|
|
faces = detector.detect(frame)
|
|
|
|
for face in faces:
|
|
bbox = face.bbox
|
|
landmarks = face.landmarks
|
|
x1, y1, x2, y2 = map(int, bbox)
|
|
|
|
embedding = recognizer.get_normalized_embedding(frame, landmarks)
|
|
sim = compute_similarity(ref_embedding, embedding)
|
|
|
|
label = f'Match ({sim:.2f})' if sim > threshold else f'Unknown ({sim:.2f})'
|
|
color = (0, 255, 0) if sim > threshold else (0, 0, 255)
|
|
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
|
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
|
|
|
return frame
|
|
|
|
|
|
def process_video(detector, recognizer, ref_embedding: np.ndarray, video_path: str, save_dir: str, threshold: float):
|
|
"""Process a video file."""
|
|
cap = cv2.VideoCapture(video_path)
|
|
if not cap.isOpened():
|
|
print(f"Error: Cannot open video file '{video_path}'")
|
|
return
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f'{Path(video_path).stem}_search.mp4')
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
|
|
|
print(f'Processing video: {video_path} ({total_frames} frames)')
|
|
frame_count = 0
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame_count += 1
|
|
frame = process_frame(frame, detector, recognizer, ref_embedding, threshold)
|
|
out.write(frame)
|
|
|
|
if frame_count % 100 == 0:
|
|
print(f' Processed {frame_count}/{total_frames} frames...')
|
|
|
|
cap.release()
|
|
out.release()
|
|
print(f'Done! Output saved: {output_path}')
|
|
|
|
|
|
def run_camera(detector, recognizer, ref_embedding: np.ndarray, camera_id: int = 0, threshold: float = 0.4):
|
|
"""Run real-time face search on webcam."""
|
|
cap = cv2.VideoCapture(camera_id)
|
|
if not cap.isOpened():
|
|
print(f'Cannot open camera {camera_id}')
|
|
return
|
|
|
|
print("Press 'q' to quit")
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
frame = cv2.flip(frame, 1)
|
|
if not ret:
|
|
break
|
|
|
|
frame = process_frame(frame, detector, recognizer, ref_embedding, threshold)
|
|
|
|
cv2.imshow('Face Recognition', frame)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Face search using a reference image')
|
|
parser.add_argument('--reference', type=str, required=True, help='Reference face image')
|
|
parser.add_argument('--source', type=str, required=True, help='Video path or camera ID (0, 1, ...)')
|
|
parser.add_argument('--threshold', type=float, default=0.4, help='Match threshold')
|
|
parser.add_argument('--detector', type=str, default='scrfd', choices=['retinaface', 'scrfd'])
|
|
parser.add_argument(
|
|
'--recognizer',
|
|
type=str,
|
|
default='arcface',
|
|
choices=['arcface', 'mobileface', 'sphereface'],
|
|
)
|
|
parser.add_argument('--save-dir', type=str, default='outputs', help='Output directory')
|
|
args = parser.parse_args()
|
|
|
|
if not os.path.exists(args.reference):
|
|
print(f'Error: Reference image not found: {args.reference}')
|
|
return
|
|
|
|
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
|
|
recognizer = get_recognizer(args.recognizer)
|
|
|
|
print(f'Loading reference: {args.reference}')
|
|
ref_embedding = extract_reference_embedding(detector, recognizer, args.reference)
|
|
|
|
source_type = get_source_type(args.source)
|
|
|
|
if source_type == 'camera':
|
|
run_camera(detector, recognizer, ref_embedding, int(args.source), args.threshold)
|
|
elif source_type == 'video':
|
|
if not os.path.exists(args.source):
|
|
print(f'Error: Video not found: {args.source}')
|
|
return
|
|
process_video(detector, recognizer, ref_embedding, args.source, args.save_dir, args.threshold)
|
|
else:
|
|
print(f"Error: Source must be a video file or camera ID, not '{args.source}'")
|
|
print('Supported formats: videos (.mp4, .avi, ...) or camera ID (0, 1, ...)')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|