Files
uniface/tools/spoofing.py
Yakhyokhuja Valikhujaev cbcd89b167 feat: Common result dataclasses and refactoring several methods. (#50)
* chore: Rename scripts to tools folder and unify argument parser

* refactor: Centralize dataclasses in types.py and add __call__ to all models

- Move Face and result dataclasses to uniface/types.py
- Add GazeResult, SpoofingResult, EmotionResult (frozen=True)
- Add __call__ to BaseDetector, BaseRecognizer, BaseLandmarker
- Add __repr__ to all dataclasses
- Replace print() with Logger in onnx_utils.py
- Update tools and docs to use new dataclass return types
- Add test_types.py with comprehensive dataclass testschore: Rename files under tools folder and unitify argument parser for them
2025-12-30 17:05:24 +09:00

215 lines
6.7 KiB
Python

# Copyright 2025 Yakhyokhuja Valikhujaev
# Author: Yakhyokhuja Valikhujaev
# GitHub: https://github.com/yakhyo
"""Face Anti-Spoofing Detection.
Usage:
python tools/spoofing.py --source path/to/image.jpg
python tools/spoofing.py --source path/to/video.mp4
python tools/spoofing.py --source 0 # webcam
"""
from __future__ import annotations
import argparse
import os
from pathlib import Path
import cv2
import numpy as np
from uniface import RetinaFace
from uniface.constants import MiniFASNetWeights
from uniface.spoofing import create_spoofer
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.webp', '.tiff'}
VIDEO_EXTENSIONS = {'.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv'}
def get_source_type(source: str) -> str:
"""Determine if source is image, video, or camera."""
if source.isdigit():
return 'camera'
path = Path(source)
suffix = path.suffix.lower()
if suffix in IMAGE_EXTENSIONS:
return 'image'
elif suffix in VIDEO_EXTENSIONS:
return 'video'
else:
return 'unknown'
def draw_spoofing_result(
image: np.ndarray,
bbox: list,
is_real: bool,
confidence: float,
thickness: int = 2,
) -> None:
"""Draw bounding box with anti-spoofing result.
Args:
image: Input image to draw on.
bbox: Bounding box in [x1, y1, x2, y2] format.
is_real: True if real face, False if fake.
confidence: Confidence score (0.0 to 1.0).
thickness: Line thickness for bounding box.
"""
x1, y1, x2, y2 = map(int, bbox[:4])
color = (0, 255, 0) if is_real else (0, 0, 255)
cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
label = 'Real' if is_real else 'Fake'
text = f'{label}: {confidence:.1%}'
(tw, th), _baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2)
cv2.rectangle(image, (x1, y1 - th - 10), (x1 + tw + 10, y1), color, -1)
cv2.putText(image, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
def process_image(detector, spoofer, image_path: str, save_dir: str = 'outputs') -> None:
"""Process a single image for face anti-spoofing detection."""
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to load image from '{image_path}'")
return
faces = detector.detect(image)
print(f'Detected {len(faces)} face(s)')
if not faces:
print('No faces detected in the image.')
return
for i, face in enumerate(faces, 1):
result = spoofer.predict(image, face.bbox)
label = 'Real' if result.is_real else 'Fake'
print(f' Face {i}: {label} ({result.confidence:.1%})')
draw_spoofing_result(image, face.bbox, result.is_real, result.confidence)
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_spoofing.jpg')
cv2.imwrite(output_path, image)
print(f'Output saved: {output_path}')
def process_video(detector, spoofer, video_path: str, save_dir: str = 'outputs') -> None:
"""Process a video file for face anti-spoofing detection."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Cannot open video file '{video_path}'")
return
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
os.makedirs(save_dir, exist_ok=True)
output_path = os.path.join(save_dir, f'{Path(video_path).stem}_spoofing.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
print(f'Processing video: {video_path} ({total_frames} frames)')
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
faces = detector.detect(frame)
for face in faces:
result = spoofer.predict(frame, face.bbox)
draw_spoofing_result(frame, face.bbox, result.is_real, result.confidence)
out.write(frame)
if frame_count % 100 == 0:
print(f' Processed {frame_count}/{total_frames} frames...')
cap.release()
out.release()
print(f'Done! Output saved: {output_path}')
def run_camera(detector, spoofer, camera_id: int = 0) -> None:
"""Run real-time anti-spoofing detection on webcam."""
cap = cv2.VideoCapture(camera_id)
if not cap.isOpened():
print(f'Cannot open camera {camera_id}')
return
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.flip(frame, 1)
faces = detector.detect(frame)
for face in faces:
result = spoofer.predict(frame, face.bbox)
draw_spoofing_result(frame, face.bbox, result.is_real, result.confidence)
cv2.imshow('Face Anti-Spoofing', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='Face Anti-Spoofing Detection')
parser.add_argument('--source', type=str, required=True, help='Image/video path or camera ID (0, 1, ...)')
parser.add_argument(
'--model',
type=str,
default='v2',
choices=['v1se', 'v2'],
help='Model variant: v1se or v2 (default: v2)',
)
parser.add_argument('--scale', type=float, default=None, help='Custom crop scale (default: auto)')
parser.add_argument('--save-dir', type=str, default='outputs', help='Output directory')
args = parser.parse_args()
# Select model variant
model_name = MiniFASNetWeights.V1SE if args.model == 'v1se' else MiniFASNetWeights.V2
# Initialize models
print(f'Initializing models (MiniFASNet {args.model.upper()})...')
detector = RetinaFace()
spoofer = create_spoofer(model_name=model_name, scale=args.scale)
source_type = get_source_type(args.source)
if source_type == 'camera':
run_camera(detector, spoofer, int(args.source))
elif source_type == 'image':
if not os.path.exists(args.source):
print(f'Error: Image not found: {args.source}')
return
process_image(detector, spoofer, args.source, args.save_dir)
elif source_type == 'video':
if not os.path.exists(args.source):
print(f'Error: Video not found: {args.source}')
return
process_video(detector, spoofer, args.source, args.save_dir)
else:
print(f"Error: Unknown source type for '{args.source}'")
print('Supported formats: images (.jpg, .png, ...), videos (.mp4, .avi, ...), or camera ID (0, 1, ...)')
if __name__ == '__main__':
main()