mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
* chore: Rename scripts to tools folder and unify argument parser * refactor: Centralize dataclasses in types.py and add __call__ to all models - Move Face and result dataclasses to uniface/types.py - Add GazeResult, SpoofingResult, EmotionResult (frozen=True) - Add __call__ to BaseDetector, BaseRecognizer, BaseLandmarker - Add __repr__ to all dataclasses - Replace print() with Logger in onnx_utils.py - Update tools and docs to use new dataclass return types - Add test_types.py with comprehensive dataclass testschore: Rename files under tools folder and unitify argument parser for them
215 lines
6.7 KiB
Python
215 lines
6.7 KiB
Python
# Copyright 2025 Yakhyokhuja Valikhujaev
|
|
# Author: Yakhyokhuja Valikhujaev
|
|
# GitHub: https://github.com/yakhyo
|
|
|
|
"""Face Anti-Spoofing Detection.
|
|
|
|
Usage:
|
|
python tools/spoofing.py --source path/to/image.jpg
|
|
python tools/spoofing.py --source path/to/video.mp4
|
|
python tools/spoofing.py --source 0 # webcam
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from uniface import RetinaFace
|
|
from uniface.constants import MiniFASNetWeights
|
|
from uniface.spoofing import create_spoofer
|
|
|
|
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.webp', '.tiff'}
|
|
VIDEO_EXTENSIONS = {'.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv'}
|
|
|
|
|
|
def get_source_type(source: str) -> str:
|
|
"""Determine if source is image, video, or camera."""
|
|
if source.isdigit():
|
|
return 'camera'
|
|
path = Path(source)
|
|
suffix = path.suffix.lower()
|
|
if suffix in IMAGE_EXTENSIONS:
|
|
return 'image'
|
|
elif suffix in VIDEO_EXTENSIONS:
|
|
return 'video'
|
|
else:
|
|
return 'unknown'
|
|
|
|
|
|
def draw_spoofing_result(
|
|
image: np.ndarray,
|
|
bbox: list,
|
|
is_real: bool,
|
|
confidence: float,
|
|
thickness: int = 2,
|
|
) -> None:
|
|
"""Draw bounding box with anti-spoofing result.
|
|
|
|
Args:
|
|
image: Input image to draw on.
|
|
bbox: Bounding box in [x1, y1, x2, y2] format.
|
|
is_real: True if real face, False if fake.
|
|
confidence: Confidence score (0.0 to 1.0).
|
|
thickness: Line thickness for bounding box.
|
|
"""
|
|
x1, y1, x2, y2 = map(int, bbox[:4])
|
|
|
|
color = (0, 255, 0) if is_real else (0, 0, 255)
|
|
|
|
cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
|
|
|
|
label = 'Real' if is_real else 'Fake'
|
|
text = f'{label}: {confidence:.1%}'
|
|
|
|
(tw, th), _baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2)
|
|
cv2.rectangle(image, (x1, y1 - th - 10), (x1 + tw + 10, y1), color, -1)
|
|
cv2.putText(image, text, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
|
|
|
|
|
def process_image(detector, spoofer, image_path: str, save_dir: str = 'outputs') -> None:
|
|
"""Process a single image for face anti-spoofing detection."""
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
faces = detector.detect(image)
|
|
print(f'Detected {len(faces)} face(s)')
|
|
|
|
if not faces:
|
|
print('No faces detected in the image.')
|
|
return
|
|
|
|
for i, face in enumerate(faces, 1):
|
|
result = spoofer.predict(image, face.bbox)
|
|
label = 'Real' if result.is_real else 'Fake'
|
|
print(f' Face {i}: {label} ({result.confidence:.1%})')
|
|
|
|
draw_spoofing_result(image, face.bbox, result.is_real, result.confidence)
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_spoofing.jpg')
|
|
cv2.imwrite(output_path, image)
|
|
print(f'Output saved: {output_path}')
|
|
|
|
|
|
def process_video(detector, spoofer, video_path: str, save_dir: str = 'outputs') -> None:
|
|
"""Process a video file for face anti-spoofing detection."""
|
|
cap = cv2.VideoCapture(video_path)
|
|
if not cap.isOpened():
|
|
print(f"Error: Cannot open video file '{video_path}'")
|
|
return
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f'{Path(video_path).stem}_spoofing.mp4')
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
|
|
|
print(f'Processing video: {video_path} ({total_frames} frames)')
|
|
frame_count = 0
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame_count += 1
|
|
faces = detector.detect(frame)
|
|
|
|
for face in faces:
|
|
result = spoofer.predict(frame, face.bbox)
|
|
draw_spoofing_result(frame, face.bbox, result.is_real, result.confidence)
|
|
|
|
out.write(frame)
|
|
|
|
if frame_count % 100 == 0:
|
|
print(f' Processed {frame_count}/{total_frames} frames...')
|
|
|
|
cap.release()
|
|
out.release()
|
|
print(f'Done! Output saved: {output_path}')
|
|
|
|
|
|
def run_camera(detector, spoofer, camera_id: int = 0) -> None:
|
|
"""Run real-time anti-spoofing detection on webcam."""
|
|
cap = cv2.VideoCapture(camera_id)
|
|
if not cap.isOpened():
|
|
print(f'Cannot open camera {camera_id}')
|
|
return
|
|
|
|
print("Press 'q' to quit")
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame = cv2.flip(frame, 1)
|
|
faces = detector.detect(frame)
|
|
|
|
for face in faces:
|
|
result = spoofer.predict(frame, face.bbox)
|
|
draw_spoofing_result(frame, face.bbox, result.is_real, result.confidence)
|
|
|
|
cv2.imshow('Face Anti-Spoofing', frame)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Face Anti-Spoofing Detection')
|
|
parser.add_argument('--source', type=str, required=True, help='Image/video path or camera ID (0, 1, ...)')
|
|
parser.add_argument(
|
|
'--model',
|
|
type=str,
|
|
default='v2',
|
|
choices=['v1se', 'v2'],
|
|
help='Model variant: v1se or v2 (default: v2)',
|
|
)
|
|
parser.add_argument('--scale', type=float, default=None, help='Custom crop scale (default: auto)')
|
|
parser.add_argument('--save-dir', type=str, default='outputs', help='Output directory')
|
|
args = parser.parse_args()
|
|
|
|
# Select model variant
|
|
model_name = MiniFASNetWeights.V1SE if args.model == 'v1se' else MiniFASNetWeights.V2
|
|
|
|
# Initialize models
|
|
print(f'Initializing models (MiniFASNet {args.model.upper()})...')
|
|
detector = RetinaFace()
|
|
spoofer = create_spoofer(model_name=model_name, scale=args.scale)
|
|
|
|
source_type = get_source_type(args.source)
|
|
|
|
if source_type == 'camera':
|
|
run_camera(detector, spoofer, int(args.source))
|
|
elif source_type == 'image':
|
|
if not os.path.exists(args.source):
|
|
print(f'Error: Image not found: {args.source}')
|
|
return
|
|
process_image(detector, spoofer, args.source, args.save_dir)
|
|
elif source_type == 'video':
|
|
if not os.path.exists(args.source):
|
|
print(f'Error: Video not found: {args.source}')
|
|
return
|
|
process_video(detector, spoofer, args.source, args.save_dir)
|
|
else:
|
|
print(f"Error: Unknown source type for '{args.source}'")
|
|
print('Supported formats: images (.jpg, .png, ...), videos (.mp4, .avi, ...), or camera ID (0, 1, ...)')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|