mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
* chore: Rename scripts to tools folder and unify argument parser * refactor: Centralize dataclasses in types.py and add __call__ to all models - Move Face and result dataclasses to uniface/types.py - Add GazeResult, SpoofingResult, EmotionResult (frozen=True) - Add __call__ to BaseDetector, BaseRecognizer, BaseLandmarker - Add __repr__ to all dataclasses - Replace print() with Logger in onnx_utils.py - Update tools and docs to use new dataclass return types - Add test_types.py with comprehensive dataclass testschore: Rename files under tools folder and unitify argument parser for them
181 lines
5.8 KiB
Python
181 lines
5.8 KiB
Python
# Copyright 2025 Yakhyokhuja Valikhujaev
|
|
# Author: Yakhyokhuja Valikhujaev
|
|
# GitHub: https://github.com/yakhyo
|
|
|
|
"""Face detection on video files with progress tracking.
|
|
|
|
Usage:
|
|
python tools/video_detection.py --source video.mp4
|
|
python tools/video_detection.py --source video.mp4 --output output.mp4
|
|
python tools/video_detection.py --source 0 # webcam
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
from tqdm import tqdm
|
|
|
|
from uniface import SCRFD, RetinaFace
|
|
from uniface.visualization import draw_detections
|
|
|
|
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.webp', '.tiff'}
|
|
VIDEO_EXTENSIONS = {'.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv'}
|
|
|
|
|
|
def get_source_type(source: str) -> str:
|
|
"""Determine if source is image, video, or camera."""
|
|
if source.isdigit():
|
|
return 'camera'
|
|
path = Path(source)
|
|
suffix = path.suffix.lower()
|
|
if suffix in IMAGE_EXTENSIONS:
|
|
return 'image'
|
|
elif suffix in VIDEO_EXTENSIONS:
|
|
return 'video'
|
|
else:
|
|
return 'unknown'
|
|
|
|
|
|
def process_video(
|
|
detector,
|
|
input_path: str,
|
|
output_path: str,
|
|
threshold: float = 0.6,
|
|
show_preview: bool = False,
|
|
):
|
|
"""Process a video file with progress bar."""
|
|
cap = cv2.VideoCapture(input_path)
|
|
if not cap.isOpened():
|
|
print(f"Error: Cannot open video file '{input_path}'")
|
|
return
|
|
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
print(f'Input: {input_path} ({width}x{height}, {fps:.1f} fps, {total_frames} frames)')
|
|
print(f'Output: {output_path}')
|
|
|
|
Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
|
|
|
if not out.isOpened():
|
|
print(f"Error: Cannot create output video '{output_path}'")
|
|
cap.release()
|
|
return
|
|
|
|
frame_count = 0
|
|
total_faces = 0
|
|
|
|
for _ in tqdm(range(total_frames), desc='Processing', unit='frames'):
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
frame_count += 1
|
|
faces = detector.detect(frame)
|
|
total_faces += len(faces)
|
|
|
|
bboxes = [f.bbox for f in faces]
|
|
scores = [f.confidence for f in faces]
|
|
landmarks = [f.landmarks for f in faces]
|
|
draw_detections(
|
|
image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
|
|
)
|
|
|
|
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
out.write(frame)
|
|
|
|
if show_preview:
|
|
cv2.imshow("Processing - Press 'q' to cancel", frame)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
print('\nCancelled by user')
|
|
break
|
|
|
|
cap.release()
|
|
out.release()
|
|
if show_preview:
|
|
cv2.destroyAllWindows()
|
|
|
|
avg_faces = total_faces / frame_count if frame_count > 0 else 0
|
|
print(f'\nDone! {frame_count} frames, {total_faces} faces ({avg_faces:.1f} avg/frame)')
|
|
print(f'Saved: {output_path}')
|
|
|
|
|
|
def run_camera(detector, camera_id: int = 0, threshold: float = 0.6):
|
|
"""Run real-time detection on webcam."""
|
|
cap = cv2.VideoCapture(camera_id)
|
|
if not cap.isOpened():
|
|
print(f'Cannot open camera {camera_id}')
|
|
return
|
|
|
|
print("Press 'q' to quit")
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
frame = cv2.flip(frame, 1)
|
|
if not ret:
|
|
break
|
|
|
|
faces = detector.detect(frame)
|
|
|
|
bboxes = [f.bbox for f in faces]
|
|
scores = [f.confidence for f in faces]
|
|
landmarks = [f.landmarks for f in faces]
|
|
draw_detections(
|
|
image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks, vis_threshold=threshold, fancy_bbox=True
|
|
)
|
|
|
|
cv2.putText(frame, f'Faces: {len(faces)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
cv2.imshow('Face Detection', frame)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Process video with face detection')
|
|
parser.add_argument('--source', type=str, required=True, help='Video path or camera ID (0, 1, ...)')
|
|
parser.add_argument('--output', type=str, default=None, help='Output video path (auto-generated if not specified)')
|
|
parser.add_argument('--detector', type=str, default='retinaface', choices=['retinaface', 'scrfd'])
|
|
parser.add_argument('--threshold', type=float, default=0.6, help='Visualization threshold')
|
|
parser.add_argument('--preview', action='store_true', help='Show live preview')
|
|
parser.add_argument('--save-dir', type=str, default='outputs', help='Output directory (if --output not specified)')
|
|
args = parser.parse_args()
|
|
|
|
detector = RetinaFace() if args.detector == 'retinaface' else SCRFD()
|
|
|
|
source_type = get_source_type(args.source)
|
|
|
|
if source_type == 'camera':
|
|
run_camera(detector, int(args.source), args.threshold)
|
|
elif source_type == 'video':
|
|
if not os.path.exists(args.source):
|
|
print(f'Error: Video not found: {args.source}')
|
|
return
|
|
|
|
# Determine output path
|
|
if args.output:
|
|
output_path = args.output
|
|
else:
|
|
os.makedirs(args.save_dir, exist_ok=True)
|
|
output_path = os.path.join(args.save_dir, f'{Path(args.source).stem}_detected.mp4')
|
|
|
|
process_video(detector, args.source, output_path, args.threshold, args.preview)
|
|
else:
|
|
print(f"Error: Unknown source type for '{args.source}'")
|
|
print('Supported formats: videos (.mp4, .avi, ...) or camera ID (0, 1, ...)')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|