mirror of
https://github.com/yakhyo/uniface.git
synced 2025-12-30 09:02:25 +00:00
117 lines
4.0 KiB
Python
117 lines
4.0 KiB
Python
# Face analysis using FaceAnalyzer
|
|
# Usage: python run_face_analyzer.py --image path/to/image.jpg
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from uniface import AgeGender, ArcFace, FaceAnalyzer, RetinaFace
|
|
from uniface.visualization import draw_detections
|
|
|
|
|
|
def draw_face_info(image, face, face_id):
|
|
"""Draw face ID and attributes above bounding box."""
|
|
x1, y1, x2, y2 = map(int, face.bbox)
|
|
lines = [f'ID: {face_id}', f'Conf: {face.confidence:.2f}']
|
|
if face.age and face.sex:
|
|
lines.append(f'{face.sex}, {face.age}y')
|
|
|
|
for i, line in enumerate(lines):
|
|
y_pos = y1 - 10 - (len(lines) - 1 - i) * 25
|
|
if y_pos < 20:
|
|
y_pos = y2 + 20 + i * 25
|
|
(tw, th), _ = cv2.getTextSize(line, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
|
cv2.rectangle(image, (x1, y_pos - th - 5), (x1 + tw + 10, y_pos + 5), (0, 255, 0), -1)
|
|
cv2.putText(image, line, (x1 + 5, y_pos), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
|
|
|
|
|
def process_image(analyzer, image_path: str, save_dir: str = 'outputs', show_similarity: bool = True):
|
|
image = cv2.imread(image_path)
|
|
if image is None:
|
|
print(f"Error: Failed to load image from '{image_path}'")
|
|
return
|
|
|
|
faces = analyzer.analyze(image)
|
|
print(f'Detected {len(faces)} face(s)')
|
|
|
|
if not faces:
|
|
return
|
|
|
|
for i, face in enumerate(faces, 1):
|
|
info = f' Face {i}: {face.sex}, {face.age}y' if face.age and face.sex else f' Face {i}'
|
|
if face.embedding is not None:
|
|
info += f' (embedding: {face.embedding.shape})'
|
|
print(info)
|
|
|
|
if show_similarity and len(faces) >= 2:
|
|
print('\nSimilarity Matrix:')
|
|
n = len(faces)
|
|
sim_matrix = np.zeros((n, n))
|
|
|
|
for i in range(n):
|
|
for j in range(i, n):
|
|
if i == j:
|
|
sim_matrix[i][j] = 1.0
|
|
else:
|
|
sim = faces[i].compute_similarity(faces[j])
|
|
sim_matrix[i][j] = sim
|
|
sim_matrix[j][i] = sim
|
|
|
|
print(' ', end='')
|
|
for i in range(n):
|
|
print(f' F{i + 1:2d} ', end='')
|
|
print('\n ' + '-' * (7 * n))
|
|
|
|
for i in range(n):
|
|
print(f'F{i + 1:2d} | ', end='')
|
|
for j in range(n):
|
|
print(f'{sim_matrix[i][j]:6.3f} ', end='')
|
|
print()
|
|
|
|
pairs = [(i, j, sim_matrix[i][j]) for i in range(n) for j in range(i + 1, n)]
|
|
pairs.sort(key=lambda x: x[2], reverse=True)
|
|
|
|
print('\nTop matches (>0.4 = same person):')
|
|
for i, j, sim in pairs[:3]:
|
|
status = 'Same' if sim > 0.4 else 'Different'
|
|
print(f' Face {i + 1} ↔ Face {j + 1}: {sim:.3f} ({status})')
|
|
|
|
bboxes = [f.bbox for f in faces]
|
|
scores = [f.confidence for f in faces]
|
|
landmarks = [f.landmarks for f in faces]
|
|
draw_detections(image=image, bboxes=bboxes, scores=scores, landmarks=landmarks, fancy_bbox=True)
|
|
|
|
for i, face in enumerate(faces, 1):
|
|
draw_face_info(image, face, i)
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
output_path = os.path.join(save_dir, f'{Path(image_path).stem}_analysis.jpg')
|
|
cv2.imwrite(output_path, image)
|
|
print(f'Output saved: {output_path}')
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Face analysis with detection, recognition, and attributes')
|
|
parser.add_argument('--image', type=str, required=True, help='Path to input image')
|
|
parser.add_argument('--save_dir', type=str, default='outputs', help='Output directory')
|
|
parser.add_argument('--no-similarity', action='store_true', help='Skip similarity matrix computation')
|
|
args = parser.parse_args()
|
|
|
|
if not os.path.exists(args.image):
|
|
print(f'Error: Image not found: {args.image}')
|
|
return
|
|
|
|
detector = RetinaFace()
|
|
recognizer = ArcFace()
|
|
age_gender = AgeGender()
|
|
analyzer = FaceAnalyzer(detector, recognizer, age_gender)
|
|
|
|
process_image(analyzer, args.image, args.save_dir, show_similarity=not args.no_similarity)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|