Files
vit-pytorch/vit_pytorch/vit_pytorch.py

128 lines
4.4 KiB
Python
Raw Normal View History

2020-10-04 12:34:44 -07:00
import torch
2021-02-19 22:28:53 -08:00
from torch import nn, einsum
2020-10-07 11:21:03 -07:00
import torch.nn.functional as F
2021-02-19 22:28:53 -08:00
2020-10-28 18:13:57 -07:00
from einops import rearrange, repeat
2021-02-19 22:28:53 -08:00
from einops.layers.torch import Rearrange
2020-10-04 12:34:44 -07:00
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
2020-10-07 11:21:03 -07:00
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
2020-10-04 12:34:44 -07:00
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
2020-10-07 11:21:03 -07:00
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
2020-10-04 12:34:44 -07:00
class FeedForward(nn.Module):
2020-10-13 13:11:32 -07:00
def __init__(self, dim, hidden_dim, dropout = 0.):
2020-10-04 12:34:44 -07:00
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
2020-10-13 13:11:32 -07:00
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
2020-10-04 12:34:44 -07:00
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
2020-10-04 12:34:44 -07:00
super().__init__()
inner_dim = dim_head * heads
2020-10-04 12:34:44 -07:00
self.heads = heads
self.scale = dim_head ** -0.5
2020-10-04 12:34:44 -07:00
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
2020-10-07 11:21:03 -07:00
def forward(self, x, mask = None):
2020-10-04 12:34:44 -07:00
b, n, _, h = *x.shape, self.heads
2020-10-22 22:37:06 -07:00
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
2020-10-04 12:34:44 -07:00
2021-02-19 22:28:53 -08:00
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
2020-11-13 12:25:21 -08:00
mask_value = -torch.finfo(dots.dtype).max
2020-10-07 11:21:03 -07:00
if mask is not None:
mask = F.pad(mask.flatten(1), (1, 0), value = True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
2021-02-17 07:38:11 -08:00
mask = rearrange(mask, 'b i -> b () i ()') * rearrange(mask, 'b j -> b () () j')
2020-11-13 12:25:21 -08:00
dots.masked_fill_(~mask, mask_value)
2020-10-07 11:21:03 -07:00
del mask
2020-10-04 12:34:44 -07:00
attn = dots.softmax(dim=-1)
2021-02-19 22:28:53 -08:00
out = einsum('b h i j, b h j d -> b h i d', attn, v)
2020-10-04 12:34:44 -07:00
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
2021-02-19 22:28:53 -08:00
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
2020-10-04 12:34:44 -07:00
super().__init__()
2020-10-07 11:21:03 -07:00
self.layers = nn.ModuleList([])
2020-10-04 12:34:44 -07:00
for _ in range(depth):
2020-10-07 11:21:03 -07:00
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
2020-10-07 11:21:03 -07:00
]))
def forward(self, x, mask = None):
for attn, ff in self.layers:
x = attn(x, mask = mask)
x = ff(x)
return x
2020-10-04 12:34:44 -07:00
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
2020-10-04 12:34:44 -07:00
super().__init__()
2020-11-21 18:23:04 +07:00
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
2020-10-04 12:34:44 -07:00
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
2020-10-04 12:34:44 -07:00
2021-02-19 22:28:53 -08:00
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.Linear(patch_dim, dim),
)
2020-10-04 12:34:44 -07:00
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
2020-10-04 12:34:44 -07:00
self.pool = pool
self.to_latent = nn.Identity()
2020-10-04 12:34:44 -07:00
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
2020-12-07 14:31:50 -08:00
nn.Linear(dim, num_classes)
2020-10-04 12:34:44 -07:00
)
2020-10-07 11:21:03 -07:00
def forward(self, img, mask = None):
2021-02-19 22:28:53 -08:00
x = self.to_patch_embedding(img)
b, n, _ = x.shape
2020-10-28 18:13:57 -07:00
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
2020-10-07 11:21:03 -07:00
x = self.transformer(x, mask)
2020-10-04 12:34:44 -07:00
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)