Files
vit-pytorch/vit_pytorch/deepvit.py

131 lines
4.2 KiB
Python
Raw Normal View History

2020-10-04 12:34:44 -07:00
import torch
2021-02-19 22:28:53 -08:00
from torch import nn, einsum
2020-10-07 11:21:03 -07:00
import torch.nn.functional as F
2021-02-19 22:28:53 -08:00
2020-10-28 18:13:57 -07:00
from einops import rearrange, repeat
2021-02-19 22:28:53 -08:00
from einops.layers.torch import Rearrange
2020-10-04 12:34:44 -07:00
class FeedForward(nn.Module):
2020-10-13 13:11:32 -07:00
def __init__(self, dim, hidden_dim, dropout = 0.):
2020-10-04 12:34:44 -07:00
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
2020-10-04 12:34:44 -07:00
nn.Linear(dim, hidden_dim),
nn.GELU(),
2020-10-13 13:11:32 -07:00
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
2020-10-04 12:34:44 -07:00
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
2020-10-04 12:34:44 -07:00
super().__init__()
inner_dim = dim_head * heads
2020-10-04 12:34:44 -07:00
self.heads = heads
self.scale = dim_head ** -0.5
2020-10-04 12:34:44 -07:00
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.dropout = nn.Dropout(dropout)
2021-03-23 11:57:13 -07:00
self.reattn_weights = nn.Parameter(torch.randn(heads, heads))
self.reattn_norm = nn.Sequential(
Rearrange('b h i j -> b i j h'),
nn.LayerNorm(heads),
Rearrange('b i j h -> b h i j')
)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
2021-03-23 11:57:13 -07:00
)
2021-03-23 11:57:13 -07:00
def forward(self, x):
2020-10-04 12:34:44 -07:00
b, n, _, h = *x.shape, self.heads
x = self.norm(x)
2020-10-22 22:37:06 -07:00
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
2020-10-04 12:34:44 -07:00
2021-03-23 11:57:13 -07:00
# attention
2021-02-19 22:28:53 -08:00
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
2021-03-23 11:57:13 -07:00
attn = dots.softmax(dim=-1)
attn = self.dropout(attn)
2020-10-07 11:21:03 -07:00
2021-03-23 11:57:13 -07:00
# re-attention
2020-10-07 11:21:03 -07:00
2021-03-23 11:57:13 -07:00
attn = einsum('b h i j, h g -> b g i j', attn, self.reattn_weights)
attn = self.reattn_norm(attn)
# aggregate and out
2020-10-04 12:34:44 -07:00
2021-02-19 22:28:53 -08:00
out = einsum('b h i j, b h j d -> b h i d', attn, v)
2020-10-04 12:34:44 -07:00
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
2021-02-19 22:28:53 -08:00
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
2020-10-04 12:34:44 -07:00
super().__init__()
2020-10-07 11:21:03 -07:00
self.layers = nn.ModuleList([])
2020-10-04 12:34:44 -07:00
for _ in range(depth):
2020-10-07 11:21:03 -07:00
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
2020-10-07 11:21:03 -07:00
]))
2021-03-23 11:57:13 -07:00
def forward(self, x):
2020-10-07 11:21:03 -07:00
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
2020-10-07 11:21:03 -07:00
return x
2020-10-04 12:34:44 -07:00
2021-03-23 11:57:13 -07:00
class DeepViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
2020-10-04 12:34:44 -07:00
super().__init__()
2020-11-21 18:23:04 +07:00
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
2020-10-04 12:34:44 -07:00
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
2020-10-04 12:34:44 -07:00
2021-02-19 22:28:53 -08:00
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
2021-02-19 22:28:53 -08:00
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
2021-02-19 22:28:53 -08:00
)
2020-10-04 12:34:44 -07:00
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
2020-10-04 12:34:44 -07:00
self.pool = pool
self.to_latent = nn.Identity()
2020-10-04 12:34:44 -07:00
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
2020-12-07 14:31:50 -08:00
nn.Linear(dim, num_classes)
2020-10-04 12:34:44 -07:00
)
2021-03-23 11:57:13 -07:00
def forward(self, img):
2021-02-19 22:28:53 -08:00
x = self.to_patch_embedding(img)
b, n, _ = x.shape
2020-10-28 18:13:57 -07:00
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
2021-03-23 11:57:13 -07:00
x = self.transformer(x)
2020-10-04 12:34:44 -07:00
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)