add dropouts

This commit is contained in:
Phil Wang
2020-10-13 13:11:32 -07:00
parent ced464dcb4
commit 0b2b3fc20c
2 changed files with 13 additions and 8 deletions

View File

@@ -23,7 +23,9 @@ v = ViT(
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048
mlp_dim = 2048,
attn_dropout = 0.1,
ff_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)

View File

@@ -19,24 +19,26 @@ class PreNorm(nn.Module):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8):
def __init__(self, dim, heads = 8, dropout = 0.):
super().__init__()
self.heads = heads
self.scale = dim ** -0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.to_out = nn.Linear(dim, dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x)
@@ -52,6 +54,7 @@ class Attention(nn.Module):
del mask
attn = dots.softmax(dim=-1)
attn = self.dropout(attn)
out = torch.einsum('bhij,bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
@@ -59,13 +62,13 @@ class Attention(nn.Module):
return out
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim):
def __init__(self, dim, depth, heads, mlp_dim, attn_dropout, ff_dropout):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim)))
Residual(PreNorm(dim, Attention(dim, heads = heads, dropout = attn_dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = ff_dropout)))
]))
def forward(self, x, mask = None):
for attn, ff in self.layers:
@@ -74,7 +77,7 @@ class Transformer(nn.Module):
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, attn_dropout = 0., ff_dropout = 0.):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (image_size // patch_size) ** 2
@@ -85,7 +88,7 @@ class ViT(nn.Module):
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, mlp_dim)
self.transformer = Transformer(dim, depth, heads, mlp_dim, attn_dropout, ff_dropout)
self.to_cls_token = nn.Identity()