diff --git a/README.md b/README.md
index 484e79f..1de5f85 100644
--- a/README.md
+++ b/README.md
@@ -31,6 +31,7 @@
- [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [3D Vit](#3d-vit)
+- [ViVit](#vivit)
- [Parallel ViT](#parallel-vit)
- [Learnable Memory ViT](#learnable-memory-vit)
- [Dino](#dino)
@@ -1022,6 +1023,34 @@ video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, widt
preds = v(video) # (4, 1000)
```
+## ViViT
+
+
+
+This paper offers 3 different types of architectures for efficient attention of videos, with the main theme being factorizing the attention across space and time. This repository will offer the first variant, which is a spatial transformer followed by a temporal one.
+
+```python
+import torch
+from vit_pytorch.vivit import ViT
+
+v = ViT(
+ image_size = 128, # image size
+ frames = 16, # number of frames
+ image_patch_size = 16, # image patch size
+ frame_patch_size = 2, # frame patch size
+ num_classes = 1000,
+ dim = 1024,
+ spatial_depth = 6, # depth of the spatial transformer
+ temporal_depth = 6, # depth of the temporal transformer
+ heads = 8,
+ mlp_dim = 2048
+)
+
+video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, width)
+
+preds = v(video) # (4, 1000)
+```
+
## Parallel ViT
@@ -1805,6 +1834,16 @@ Coming from computer vision and new to transformers? Here are some resources tha
```
+```bibtex
+@article{Arnab2021ViViTAV,
+ title = {ViViT: A Video Vision Transformer},
+ author = {Anurag Arnab and Mostafa Dehghani and Georg Heigold and Chen Sun and Mario Lucic and Cordelia Schmid},
+ journal = {2021 IEEE/CVF International Conference on Computer Vision (ICCV)},
+ year = {2021},
+ pages = {6816-6826}
+}
+```
+
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},
diff --git a/images/vivit.png b/images/vivit.png
new file mode 100644
index 0000000..ed618ac
Binary files /dev/null and b/images/vivit.png differ
diff --git a/setup.py b/setup.py
index 1e4bb40..31f11e4 100644
--- a/setup.py
+++ b/setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
- version = '0.36.2',
+ version = '0.37.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description_content_type = 'text/markdown',
diff --git a/vit_pytorch/vivit.py b/vit_pytorch/vivit.py
new file mode 100644
index 0000000..67e8c52
--- /dev/null
+++ b/vit_pytorch/vivit.py
@@ -0,0 +1,169 @@
+import torch
+from torch import nn
+
+from einops import rearrange, repeat
+from einops.layers.torch import Rearrange
+
+# helpers
+
+def pair(t):
+ return t if isinstance(t, tuple) else (t, t)
+
+# classes
+
+class PreNorm(nn.Module):
+ def __init__(self, dim, fn):
+ super().__init__()
+ self.norm = nn.LayerNorm(dim)
+ self.fn = fn
+ def forward(self, x, **kwargs):
+ return self.fn(self.norm(x), **kwargs)
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, hidden_dim, dropout = 0.):
+ super().__init__()
+ self.net = nn.Sequential(
+ nn.Linear(dim, hidden_dim),
+ nn.GELU(),
+ nn.Dropout(dropout),
+ nn.Linear(hidden_dim, dim),
+ nn.Dropout(dropout)
+ )
+ def forward(self, x):
+ return self.net(x)
+
+class Attention(nn.Module):
+ def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
+ super().__init__()
+ inner_dim = dim_head * heads
+ project_out = not (heads == 1 and dim_head == dim)
+
+ self.heads = heads
+ self.scale = dim_head ** -0.5
+
+ self.attend = nn.Softmax(dim = -1)
+ self.dropout = nn.Dropout(dropout)
+
+ self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
+
+ self.to_out = nn.Sequential(
+ nn.Linear(inner_dim, dim),
+ nn.Dropout(dropout)
+ ) if project_out else nn.Identity()
+
+ def forward(self, x):
+ qkv = self.to_qkv(x).chunk(3, dim = -1)
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
+
+ dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
+
+ attn = self.attend(dots)
+ attn = self.dropout(attn)
+
+ out = torch.matmul(attn, v)
+ out = rearrange(out, 'b h n d -> b n (h d)')
+ return self.to_out(out)
+
+class Transformer(nn.Module):
+ def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
+ super().__init__()
+ self.layers = nn.ModuleList([])
+ for _ in range(depth):
+ self.layers.append(nn.ModuleList([
+ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
+ PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
+ ]))
+ def forward(self, x):
+ for attn, ff in self.layers:
+ x = attn(x) + x
+ x = ff(x) + x
+ return x
+
+class ViT(nn.Module):
+ def __init__(
+ self,
+ *,
+ image_size,
+ image_patch_size,
+ frames,
+ frame_patch_size,
+ num_classes,
+ dim,
+ spatial_depth,
+ temporal_depth,
+ heads,
+ mlp_dim,
+ pool = 'cls',
+ channels = 3,
+ dim_head = 64,
+ dropout = 0.,
+ emb_dropout = 0.
+ ):
+ super().__init__()
+ image_height, image_width = pair(image_size)
+ patch_height, patch_width = pair(image_patch_size)
+
+ assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
+ assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size'
+
+ num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
+ patch_dim = channels * patch_height * patch_width * frame_patch_size
+
+ assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
+
+ self.to_patch_embedding = nn.Sequential(
+ Rearrange('b c (f pf) (h p1) (w p2) -> b f (h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
+ nn.Linear(patch_dim, dim),
+ )
+
+ self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
+ self.dropout = nn.Dropout(emb_dropout)
+ self.spatial_cls_token = nn.Parameter(torch.randn(1, 1, dim))
+ self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim))
+
+ self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
+ self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout)
+
+ self.pool = pool
+ self.to_latent = nn.Identity()
+
+ self.mlp_head = nn.Sequential(
+ nn.LayerNorm(dim),
+ nn.Linear(dim, num_classes)
+ )
+
+ def forward(self, img):
+ x = self.to_patch_embedding(img)
+ b, f, n, _ = x.shape
+
+ spatial_cls_tokens = repeat(self.spatial_cls_token, '1 1 d -> b f 1 d', b = b, f = f)
+ x = torch.cat((spatial_cls_tokens, x), dim = 2)
+ x += self.pos_embedding[:, :(n + 1)]
+ x = self.dropout(x)
+
+ x = rearrange(x, 'b f n d -> (b f) n d')
+
+ # attend across space
+
+ x = self.spatial_transformer(x)
+
+ x = rearrange(x, '(b f) n d -> b f n d', b = b)
+
+ # excise out the spatial cls tokens for temporal attention
+
+ x = x[:, :, 0]
+
+ # append temporal CLS tokens
+
+ temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b)
+
+ x = torch.cat((temporal_cls_tokens, x), dim = 1)
+
+ # attend across time
+
+ x = self.temporal_transformer(x)
+
+ x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
+
+ x = self.to_latent(x)
+ return self.mlp_head(x)