mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
add a vit with decorrelation auxiliary losses for mha and feedforwards, right after prenorm - this is in line with a paper from the netherlands, but without extra parameters or their manual sgd update scheme
This commit is contained in:
12
README.md
12
README.md
@@ -2201,4 +2201,16 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@misc{carrigg2025decorrelationspeedsvisiontransformers,
|
||||||
|
title = {Decorrelation Speeds Up Vision Transformers},
|
||||||
|
author = {Kieran Carrigg and Rob van Gastel and Melda Yeghaian and Sander Dalm and Faysal Boughorbel and Marcel van Gerven},
|
||||||
|
year = {2025},
|
||||||
|
eprint = {2510.14657},
|
||||||
|
archivePrefix = {arXiv},
|
||||||
|
primaryClass = {cs.CV},
|
||||||
|
url = {https://arxiv.org/abs/2510.14657},
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon
|
*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "vit-pytorch"
|
name = "vit-pytorch"
|
||||||
version = "1.14.5"
|
version = "1.15.0"
|
||||||
description = "Vision Transformer (ViT) - Pytorch"
|
description = "Vision Transformer (ViT) - Pytorch"
|
||||||
readme = { file = "README.md", content-type = "text/markdown" }
|
readme = { file = "README.md", content-type = "text/markdown" }
|
||||||
license = { file = "LICENSE" }
|
license = { file = "LICENSE" }
|
||||||
|
|||||||
212
vit_pytorch/vit_with_decorr.py
Normal file
212
vit_pytorch/vit_with_decorr.py
Normal file
@@ -0,0 +1,212 @@
|
|||||||
|
# https://arxiv.org/abs/2510.14657
|
||||||
|
# but instead of their decorr module updated with SGD, remove all projections and just return a decorrelation auxiliary loss
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn, stack
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.nn import Module, ModuleList
|
||||||
|
|
||||||
|
from einops import rearrange, repeat, reduce, einsum, pack, unpack
|
||||||
|
from einops.layers.torch import Rearrange
|
||||||
|
|
||||||
|
# helpers
|
||||||
|
|
||||||
|
def exists(v):
|
||||||
|
return v is not None
|
||||||
|
|
||||||
|
def default(v, d):
|
||||||
|
return v if exists(v) else d
|
||||||
|
|
||||||
|
def pair(t):
|
||||||
|
return t if isinstance(t, tuple) else (t, t)
|
||||||
|
|
||||||
|
# decorr loss
|
||||||
|
|
||||||
|
class DecorrelationLoss(Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
sample_frac = 1.
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
assert 0. <= sample_frac <= 1.
|
||||||
|
self.need_sample = sample_frac < 1.
|
||||||
|
self.sample_frac = sample_frac
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
tokens
|
||||||
|
):
|
||||||
|
batch, seq_len, dim, device = *tokens.shape[-3:], tokens.device
|
||||||
|
|
||||||
|
if self.need_sample:
|
||||||
|
num_sampled = int(seq_len * self.sample_frac)
|
||||||
|
assert num_sampled >= 2.
|
||||||
|
|
||||||
|
tokens, packed_shape = pack([tokens], '* n d e')
|
||||||
|
|
||||||
|
indices = torch.randn(tokens.shape[:2]).argsort(dim = -1)[..., :num_sampled, :]
|
||||||
|
|
||||||
|
batch_arange = torch.arange(tokens.shape[0], device = tokens.device)
|
||||||
|
batch_arange = rearrange(batch_arange, 'b -> b 1')
|
||||||
|
|
||||||
|
tokens = tokens[batch_arange, indices]
|
||||||
|
tokens, = unpack(tokens, packed_shape, '* n d e')
|
||||||
|
|
||||||
|
dist = einsum(tokens, tokens, '... n d, ... n e -> ... d e') / seq_len
|
||||||
|
eye = torch.eye(dim, device = device)
|
||||||
|
|
||||||
|
loss = dist.pow(2) * (1. - eye) / ((dim - 1) * dim)
|
||||||
|
|
||||||
|
loss = reduce(loss, 'l b d e -> b', 'sum')
|
||||||
|
return loss.sum()
|
||||||
|
|
||||||
|
# classes
|
||||||
|
|
||||||
|
class FeedForward(Module):
|
||||||
|
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||||
|
super().__init__()
|
||||||
|
self.norm = nn.LayerNorm(dim)
|
||||||
|
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(dim, hidden_dim),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(hidden_dim, dim),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
normed = self.norm(x)
|
||||||
|
return self.net(x), normed
|
||||||
|
|
||||||
|
class Attention(Module):
|
||||||
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
||||||
|
super().__init__()
|
||||||
|
inner_dim = dim_head * heads
|
||||||
|
project_out = not (heads == 1 and dim_head == dim)
|
||||||
|
|
||||||
|
self.norm = nn.LayerNorm(dim)
|
||||||
|
self.heads = heads
|
||||||
|
self.scale = dim_head ** -0.5
|
||||||
|
|
||||||
|
self.attend = nn.Softmax(dim = -1)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||||
|
|
||||||
|
self.to_out = nn.Sequential(
|
||||||
|
nn.Linear(inner_dim, dim),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
) if project_out else nn.Identity()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
normed = self.norm(x)
|
||||||
|
|
||||||
|
qkv = self.to_qkv(normed).chunk(3, dim = -1)
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
||||||
|
|
||||||
|
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||||
|
|
||||||
|
attn = self.attend(dots)
|
||||||
|
attn = self.dropout(attn)
|
||||||
|
|
||||||
|
out = torch.matmul(attn, v)
|
||||||
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||||
|
|
||||||
|
return self.to_out(out), normed
|
||||||
|
|
||||||
|
class Transformer(Module):
|
||||||
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
||||||
|
super().__init__()
|
||||||
|
self.norm = nn.LayerNorm(dim)
|
||||||
|
self.layers = ModuleList([])
|
||||||
|
|
||||||
|
for _ in range(depth):
|
||||||
|
self.layers.append(ModuleList([
|
||||||
|
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
|
||||||
|
FeedForward(dim, mlp_dim, dropout = dropout)
|
||||||
|
]))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
|
||||||
|
normed_inputs = []
|
||||||
|
|
||||||
|
for attn, ff in self.layers:
|
||||||
|
attn_out, attn_normed_inp = attn(x)
|
||||||
|
x = attn_out + x
|
||||||
|
|
||||||
|
ff_out, ff_normed_inp = ff(x)
|
||||||
|
x = ff_out + x
|
||||||
|
|
||||||
|
normed_inputs.append(attn_normed_inp)
|
||||||
|
normed_inputs.append(ff_normed_inp)
|
||||||
|
|
||||||
|
return self.norm(x), stack(normed_inputs)
|
||||||
|
|
||||||
|
class ViT(Module):
|
||||||
|
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., decorr_sample_frac = 1.):
|
||||||
|
super().__init__()
|
||||||
|
image_height, image_width = pair(image_size)
|
||||||
|
patch_height, patch_width = pair(patch_size)
|
||||||
|
|
||||||
|
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
||||||
|
|
||||||
|
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||||
|
patch_dim = channels * patch_height * patch_width
|
||||||
|
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
||||||
|
|
||||||
|
self.to_patch_embedding = nn.Sequential(
|
||||||
|
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||||
|
nn.LayerNorm(patch_dim),
|
||||||
|
nn.Linear(patch_dim, dim),
|
||||||
|
nn.LayerNorm(dim),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||||
|
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||||
|
self.dropout = nn.Dropout(emb_dropout)
|
||||||
|
|
||||||
|
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
|
||||||
|
|
||||||
|
self.pool = pool
|
||||||
|
self.to_latent = nn.Identity()
|
||||||
|
|
||||||
|
self.mlp_head = nn.Linear(dim, num_classes)
|
||||||
|
|
||||||
|
# decorrelation loss related
|
||||||
|
|
||||||
|
self.has_decorr_loss = decorr_sample_frac > 0.
|
||||||
|
|
||||||
|
if self.has_decorr_loss:
|
||||||
|
self.decorr_loss = DecorrelationLoss(decorr_sample_frac)
|
||||||
|
|
||||||
|
self.register_buffer('zero', torch.tensor(0.), persistent = False)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
img,
|
||||||
|
return_decorr_aux_loss = None
|
||||||
|
):
|
||||||
|
return_decorr_aux_loss = default(return_decorr_aux_loss, self.training) and self.has_decorr_loss
|
||||||
|
|
||||||
|
x = self.to_patch_embedding(img)
|
||||||
|
b, n, _ = x.shape
|
||||||
|
|
||||||
|
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
|
||||||
|
x = torch.cat((cls_tokens, x), dim=1)
|
||||||
|
x += self.pos_embedding[:, :(n + 1)]
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x, normed_layer_inputs = self.transformer(x)
|
||||||
|
|
||||||
|
# maybe return decor loss
|
||||||
|
|
||||||
|
decorr_aux_loss = self.zero
|
||||||
|
|
||||||
|
if return_decorr_aux_loss:
|
||||||
|
decorr_aux_loss = self.decorr_loss(normed_layer_inputs)
|
||||||
|
|
||||||
|
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
|
||||||
|
|
||||||
|
x = self.to_latent(x)
|
||||||
|
return self.mlp_head(x), decorr_aux_loss
|
||||||
Reference in New Issue
Block a user