diff --git a/setup.py b/setup.py index e635fec..fcd6037 100644 --- a/setup.py +++ b/setup.py @@ -3,7 +3,7 @@ from setuptools import setup, find_packages setup( name = 'vit-pytorch', packages = find_packages(exclude=['examples']), - version = '0.38.1', + version = '0.39.1', license='MIT', description = 'Vision Transformer (ViT) - Pytorch', long_description_content_type = 'text/markdown', @@ -16,7 +16,7 @@ setup( 'image recognition' ], install_requires=[ - 'einops>=0.4.1', + 'einops>=0.6.0', 'torch>=1.10', 'torchvision' ], diff --git a/vit_pytorch/simple_vit_1d.py b/vit_pytorch/simple_vit_1d.py new file mode 100644 index 0000000..5a18594 --- /dev/null +++ b/vit_pytorch/simple_vit_1d.py @@ -0,0 +1,125 @@ +import torch +from torch import nn + +from einops import rearrange +from einops.layers.torch import Rearrange + +# helpers + +def posemb_sincos_1d(patches, temperature = 10000, dtype = torch.float32): + _, n, dim, device, dtype = *patches.shape, patches.device, patches.dtype + + n = torch.arange(n, device = device) + assert (dim % 2) == 0, 'feature dimension must be multiple of 2 for sincos emb' + omega = torch.arange(dim // 2, device = device) / (dim // 2 - 1) + omega = 1. / (temperature ** omega) + + n = n.flatten()[:, None] * omega[None, :] + pe = torch.cat((n.sin(), n.cos()), dim = 1) + return pe.type(dtype) + +# classes + +class FeedForward(nn.Module): + def __init__(self, dim, hidden_dim): + super().__init__() + self.net = nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, hidden_dim), + nn.GELU(), + nn.Linear(hidden_dim, dim), + ) + def forward(self, x): + return self.net(x) + +class Attention(nn.Module): + def __init__(self, dim, heads = 8, dim_head = 64): + super().__init__() + inner_dim = dim_head * heads + self.heads = heads + self.scale = dim_head ** -0.5 + self.norm = nn.LayerNorm(dim) + + self.attend = nn.Softmax(dim = -1) + + self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) + self.to_out = nn.Linear(inner_dim, dim, bias = False) + + def forward(self, x): + x = self.norm(x) + + qkv = self.to_qkv(x).chunk(3, dim = -1) + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) + + dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale + + attn = self.attend(dots) + + out = torch.matmul(attn, v) + out = rearrange(out, 'b h n d -> b n (h d)') + return self.to_out(out) + +class Transformer(nn.Module): + def __init__(self, dim, depth, heads, dim_head, mlp_dim): + super().__init__() + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append(nn.ModuleList([ + Attention(dim, heads = heads, dim_head = dim_head), + FeedForward(dim, mlp_dim) + ])) + def forward(self, x): + for attn, ff in self.layers: + x = attn(x) + x + x = ff(x) + x + return x + +class SimpleViT(nn.Module): + def __init__(self, *, seq_len, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64): + super().__init__() + + assert seq_len % patch_size == 0 + + num_patches = seq_len // patch_size + patch_dim = channels * patch_size + + self.to_patch_embedding = nn.Sequential( + Rearrange('b c (n p) -> b n (p c)', p = patch_size), + nn.Linear(patch_dim, dim), + ) + + self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) + + self.to_latent = nn.Identity() + self.linear_head = nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, num_classes) + ) + + def forward(self, series): + *_, n, dtype = *series.shape, series.dtype + + x = self.to_patch_embedding(series) + pe = posemb_sincos_1d(x) + x = rearrange(x, 'b ... d -> b (...) d') + pe + + x = self.transformer(x) + x = x.mean(dim = 1) + + x = self.to_latent(x) + return self.linear_head(x) + +if __name__ == '__main__': + + v = SimpleViT( + seq_len = 256, + patch_size = 16, + num_classes = 1000, + dim = 1024, + depth = 6, + heads = 8, + mlp_dim = 2048 + ) + + time_series = torch.randn(4, 3, 256) + logits = v(time_series) # (4, 1000) diff --git a/vit_pytorch/vit_1d.py b/vit_pytorch/vit_1d.py new file mode 100644 index 0000000..300fa32 --- /dev/null +++ b/vit_pytorch/vit_1d.py @@ -0,0 +1,133 @@ +import torch +from torch import nn + +from einops import rearrange, repeat, pack, unpack +from einops.layers.torch import Rearrange + +# classes + +class PreNorm(nn.Module): + def __init__(self, dim, fn): + super().__init__() + self.norm = nn.LayerNorm(dim) + self.fn = fn + def forward(self, x, **kwargs): + return self.fn(self.norm(x), **kwargs) + +class FeedForward(nn.Module): + def __init__(self, dim, hidden_dim, dropout = 0.): + super().__init__() + self.net = nn.Sequential( + nn.Linear(dim, hidden_dim), + nn.GELU(), + nn.Dropout(dropout), + nn.Linear(hidden_dim, dim), + nn.Dropout(dropout) + ) + def forward(self, x): + return self.net(x) + +class Attention(nn.Module): + def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): + super().__init__() + inner_dim = dim_head * heads + project_out = not (heads == 1 and dim_head == dim) + + self.heads = heads + self.scale = dim_head ** -0.5 + + self.attend = nn.Softmax(dim = -1) + self.dropout = nn.Dropout(dropout) + + self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, dim), + nn.Dropout(dropout) + ) if project_out else nn.Identity() + + def forward(self, x): + qkv = self.to_qkv(x).chunk(3, dim = -1) + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) + + dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale + + attn = self.attend(dots) + attn = self.dropout(attn) + + out = torch.matmul(attn, v) + out = rearrange(out, 'b h n d -> b n (h d)') + return self.to_out(out) + +class Transformer(nn.Module): + def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): + super().__init__() + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append(nn.ModuleList([ + PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), + PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) + ])) + def forward(self, x): + for attn, ff in self.layers: + x = attn(x) + x + x = ff(x) + x + return x + +class ViT(nn.Module): + def __init__(self, *, seq_len, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): + super().__init__() + assert (seq_len % patch_size) == 0 + + num_patches = seq_len // patch_size + patch_dim = channels * patch_size + + self.to_patch_embedding = nn.Sequential( + Rearrange('b c (n p) -> b n (p c)', p = patch_size), + nn.Linear(patch_dim, dim), + ) + + self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) + self.cls_token = nn.Parameter(torch.randn(dim)) + self.dropout = nn.Dropout(emb_dropout) + + self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) + + self.mlp_head = nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, num_classes) + ) + + def forward(self, series): + x = self.to_patch_embedding(series) + b, n, _ = x.shape + + cls_tokens = repeat(self.cls_token, 'd -> b d', b = b) + + x, ps = pack([cls_tokens, x], 'b * d') + + x += self.pos_embedding[:, :(n + 1)] + x = self.dropout(x) + + x = self.transformer(x) + + cls_tokens, _ = unpack(x, ps, 'b * d') + + return self.mlp_head(cls_tokens) + +if __name__ == '__main__': + + v = ViT( + seq_len = 256, + patch_size = 16, + num_classes = 1000, + dim = 1024, + depth = 6, + heads = 8, + mlp_dim = 2048, + dropout = 0.1, + emb_dropout = 0.1 + ) + + time_series = torch.randn(4, 3, 256) + logits = v(time_series) # (4, 1000)