diff --git a/README.md b/README.md index 8206a0a..69e7553 100644 --- a/README.md +++ b/README.md @@ -27,6 +27,7 @@ - [Masked Autoencoder](#masked-autoencoder) - [Simple Masked Image Modeling](#simple-masked-image-modeling) - [Masked Patch Prediction](#masked-patch-prediction) +- [Masked Position Prediction](#masked-position-prediction) - [Adaptive Token Sampling](#adaptive-token-sampling) - [Patch Merger](#patch-merger) - [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets) @@ -844,6 +845,39 @@ for _ in range(100): torch.save(model.state_dict(), './pretrained-net.pt') ``` +## Masked Position Prediction + + + +New paper that introduces masked position prediction pre-training criteria. This strategy is more efficient than the Masked Autoencoder strategy and has comparable performance. + +```python +import torch +from vit_pytorch.mp3 import MP3 + +model = MP3( + image_size=256, + patch_size=8, + masking_ratio=0.75 + dim=1024, + depth=6, + heads=8, + mlp_dim=2048, + dropout=0.1, +) + +images = torch.randn(8, 3, 256, 256) + +loss = model(images) +loss.backward() + +# that's all! +# do the above in a for loop many times with a lot of images and your vision transformer will learn + +# save your improved vision transformer +torch.save(v.state_dict(), './trained-vit.pt') +``` + ## Adaptive Token Sampling diff --git a/images/mp3.png b/images/mp3.png new file mode 100644 index 0000000..5ae8d9e Binary files /dev/null and b/images/mp3.png differ diff --git a/vit_pytorch/mp3.py b/vit_pytorch/mp3.py new file mode 100644 index 0000000..d3daa7c --- /dev/null +++ b/vit_pytorch/mp3.py @@ -0,0 +1,137 @@ +import torch +from torch import nn, einsum +import torch.nn.functional as F + +from einops import rearrange, repeat +from einops.layers.torch import Rearrange + +# helpers + +def pair(t): + return t if isinstance(t, tuple) else (t, t) + +# pre-layernorm + +class PreNorm(nn.Module): + def __init__(self, dim, fn): + super().__init__() + self.norm = nn.LayerNorm(dim) + self.fn = fn + def forward(self, x, **kwargs): + return self.fn(self.norm(x), **kwargs) + +class FeedForward(nn.Module): + def __init__(self, dim, hidden_dim, dropout = 0.): + super().__init__() + self.net = nn.Sequential( + nn.Linear(dim, hidden_dim), + nn.GELU(), + nn.Dropout(dropout), + nn.Linear(hidden_dim, dim), + nn.Dropout(dropout) + ) + def forward(self, x): + return self.net(x) + +# cross attention + +class CrossAttention(nn.Module): + def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): + super().__init__() + inner_dim = dim_head * heads + self.heads = heads + self.scale = dim_head ** -0.5 + + self.attend = nn.Softmax(dim = -1) + self.dropout = nn.Dropout(dropout) + + self.to_q = nn.Linear(dim, inner_dim, bias = False) + self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, dim), + nn.Dropout(dropout) + ) + + def forward(self, x, context): + b, n, _, h = *x.shape, self.heads + + qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) + + dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale + + attn = self.attend(dots) + attn = self.dropout(attn) + + out = einsum('b h i j, b h j d -> b h i d', attn, v) + out = rearrange(out, 'b h n d -> b n (h d)') + return self.to_out(out) + +class Transformer(nn.Module): + def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): + super().__init__() + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append(nn.ModuleList([ + PreNorm(dim, CrossAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), + PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) + ])) + def forward(self, x, context): + for attn, ff in self.layers: + x = attn(x, context=context) + x + x = ff(x) + x + return x + +# Masked Position Prediction Pre-Training + +class MP3(nn.Module): + def __init__(self, *, image_size, patch_size, masking_ratio, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0.): + super().__init__() + image_height, image_width = pair(image_size) + patch_height, patch_width = pair(patch_size) + + assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' + + assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1' + self.masking_ratio = masking_ratio + + num_patches = (image_height // patch_height) * (image_width // patch_width) + patch_dim = channels * patch_height * patch_width + + self.to_patch_embedding = nn.Sequential( + Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), + nn.LayerNorm(patch_dim), + nn.Linear(patch_dim, dim), + nn.LayerNorm(dim), + ) + + self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) + + self.mlp_head = nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, num_patches) + ) + self.out = nn.Softmax(dim = -1) + + def forward(self, img): + device = img.device + tokens = self.to_patch_embedding(img) + batch, num_patches, *_ = tokens.shape + + # Masking + num_masked = int(self.masking_ratio * num_patches) + rand_indices = torch.rand(batch, num_patches, device = device).argsort(dim = -1) + masked_indices, unmasked_indices = rand_indices[:, :num_masked], rand_indices[:, num_masked:] + + batch_range = torch.arange(batch, device = device)[:, None] + tokens_unmasked = tokens[batch_range, unmasked_indices] + + x = rearrange(self.mlp_head(self.transformer(tokens, tokens_unmasked)), 'b n d -> (b n) d') + x = self.out(x) + + # Define labels + labels = repeat(torch.arange(num_patches, device = device), 'n -> b n', b = batch).flatten() + loss = F.cross_entropy(x, labels) + + return loss