mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
correct need for post-attention dropout
This commit is contained in:
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '0.29.1',
|
||||
version = '0.30.0',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -139,6 +139,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.output_num_tokens = output_num_tokens
|
||||
@@ -163,6 +165,7 @@ class Attention(nn.Module):
|
||||
dots = dots.masked_fill(~dots_mask, mask_value)
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
sampled_token_ids = None
|
||||
|
||||
|
||||
@@ -76,6 +76,7 @@ class Attention(nn.Module):
|
||||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads))
|
||||
self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads))
|
||||
@@ -96,7 +97,10 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn) # talking heads, pre-softmax
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
attn = einsum('b h i j, h g -> b g i j', attn, self.mix_heads_post_attn) # talking heads, post-softmax
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
|
||||
@@ -48,6 +48,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
||||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
||||
|
||||
@@ -69,6 +71,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -95,6 +95,9 @@ class Attention(nn.Module):
|
||||
self.window_size = window_size
|
||||
|
||||
self.norm = LayerNorm(dim)
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
|
||||
self.to_out = nn.Conv2d(inner_dim, dim, 1)
|
||||
|
||||
@@ -151,6 +154,7 @@ class Attention(nn.Module):
|
||||
# attend
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# merge heads
|
||||
|
||||
|
||||
@@ -76,6 +76,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_q = DepthWiseConv2d(dim, inner_dim, proj_kernel, padding = padding, stride = 1, bias = False)
|
||||
self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, proj_kernel, padding = padding, stride = kv_proj_stride, bias = False)
|
||||
@@ -94,6 +95,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)
|
||||
|
||||
@@ -42,6 +42,8 @@ class Attention(nn.Module):
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.reattn_weights = nn.Parameter(torch.randn(heads, heads))
|
||||
|
||||
self.reattn_norm = nn.Sequential(
|
||||
@@ -64,6 +66,7 @@ class Attention(nn.Module):
|
||||
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
attn = dots.softmax(dim=-1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# re-attention
|
||||
|
||||
|
||||
@@ -52,6 +52,7 @@ class Attention(nn.Module):
|
||||
self.to_v = nn.Sequential(nn.Conv2d(dim, inner_dim_value, 1, bias = False), nn.BatchNorm2d(inner_dim_value))
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
out_batch_norm = nn.BatchNorm2d(dim_out)
|
||||
nn.init.zeros_(out_batch_norm.weight)
|
||||
@@ -100,6 +101,7 @@ class Attention(nn.Module):
|
||||
dots = self.apply_pos_bias(dots)
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h (x y) d -> b (h d) x y', h = h, y = y)
|
||||
|
||||
@@ -78,6 +78,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -93,6 +94,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -54,6 +54,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim=-1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -67,7 +69,10 @@ class Attention(nn.Module):
|
||||
t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b p h n d -> b p n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
@@ -55,6 +55,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -71,6 +72,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w)
|
||||
|
||||
@@ -50,6 +50,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -64,6 +66,7 @@ class Attention(nn.Module):
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -48,6 +48,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -63,6 +64,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -61,8 +61,13 @@ class Attention(nn.Module):
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
self.to_out = nn.Linear(inner_dim, dim)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, rel_pos_bias = None):
|
||||
h = self.heads
|
||||
@@ -86,6 +91,7 @@ class Attention(nn.Module):
|
||||
sim = sim + rel_pos_bias
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# merge heads
|
||||
|
||||
|
||||
@@ -104,6 +104,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.use_ds_conv = use_ds_conv
|
||||
|
||||
@@ -148,6 +149,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
|
||||
|
||||
@@ -90,6 +90,7 @@ class ScalableSelfAttention(nn.Module):
|
||||
self.heads = heads
|
||||
self.scale = dim_key ** -0.5
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
|
||||
self.to_k = nn.Conv2d(dim, dim_key * heads, reduction_factor, stride = reduction_factor, bias = False)
|
||||
@@ -116,6 +117,7 @@ class ScalableSelfAttention(nn.Module):
|
||||
# attention
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# aggregate values
|
||||
|
||||
@@ -141,6 +143,7 @@ class InteractiveWindowedSelfAttention(nn.Module):
|
||||
self.scale = dim_key ** -0.5
|
||||
self.window_size = window_size
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.local_interactive_module = nn.Conv2d(dim_value * heads, dim_value * heads, 3, padding = 1)
|
||||
|
||||
@@ -176,6 +179,7 @@ class InteractiveWindowedSelfAttention(nn.Module):
|
||||
# attention
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# aggregate values
|
||||
|
||||
|
||||
@@ -130,6 +130,8 @@ class GlobalAttention(nn.Module):
|
||||
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
|
||||
self.to_kv = nn.Conv2d(dim, inner_dim * 2, k, stride = k, bias = False)
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Conv2d(inner_dim, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
@@ -145,6 +147,7 @@ class GlobalAttention(nn.Module):
|
||||
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
attn = dots.softmax(dim = -1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)
|
||||
|
||||
@@ -42,6 +42,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -56,6 +58,7 @@ class Attention(nn.Module):
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -42,6 +42,8 @@ class LSA(nn.Module):
|
||||
self.temperature = nn.Parameter(torch.log(torch.tensor(dim_head ** -0.5)))
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -60,6 +62,7 @@ class LSA(nn.Module):
|
||||
dots = dots.masked_fill(mask, mask_value)
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -63,6 +63,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -77,6 +79,7 @@ class Attention(nn.Module):
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
Reference in New Issue
Block a user