mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
add EsViT, by popular request, an alternative to Dino that is compatible with efficient ViTs with accounting for regional self-supervised loss
This commit is contained in:
85
README.md
85
README.md
@@ -32,6 +32,7 @@
|
||||
- [Parallel ViT](#parallel-vit)
|
||||
- [Learnable Memory ViT](#learnable-memory-vit)
|
||||
- [Dino](#dino)
|
||||
- [EsViT](#esvit)
|
||||
- [Accessing Attention](#accessing-attention)
|
||||
- [Research Ideas](#research-ideas)
|
||||
* [Efficient Attention](#efficient-attention)
|
||||
@@ -1076,6 +1077,80 @@ for _ in range(100):
|
||||
torch.save(model.state_dict(), './pretrained-net.pt')
|
||||
```
|
||||
|
||||
## EsViT
|
||||
|
||||
<img src="./images/esvit.png" width="350px"></img>
|
||||
|
||||
<a href="https://arxiv.org/abs/2106.09785">`EsViT`</a> is a variant of Dino (from above) re-engineered to support efficient `ViT`s with patch merging / downsampling by taking into an account an extra regional loss between the augmented views. To quote the abstract, it `outperforms its supervised counterpart on 17 out of 18 datasets` at 3 times higher throughput.
|
||||
|
||||
Even though it is named as though it were a new `ViT` variant, it actually is just a strategy for training any multistage `ViT` (in the paper, they focused on Swin). The example below will show how to use it with `CvT`. You'll need to set the `hidden_layer` to the name of the layer within your efficient ViT that outputs the non-average pooled visual representations, just before the global pooling and projection to logits.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from vit_pytorch.cvt import CvT
|
||||
from vit_pytorch.es_vit import EsViTTrainer
|
||||
|
||||
cvt = CvT(
|
||||
num_classes = 1000,
|
||||
s1_emb_dim = 64,
|
||||
s1_emb_kernel = 7,
|
||||
s1_emb_stride = 4,
|
||||
s1_proj_kernel = 3,
|
||||
s1_kv_proj_stride = 2,
|
||||
s1_heads = 1,
|
||||
s1_depth = 1,
|
||||
s1_mlp_mult = 4,
|
||||
s2_emb_dim = 192,
|
||||
s2_emb_kernel = 3,
|
||||
s2_emb_stride = 2,
|
||||
s2_proj_kernel = 3,
|
||||
s2_kv_proj_stride = 2,
|
||||
s2_heads = 3,
|
||||
s2_depth = 2,
|
||||
s2_mlp_mult = 4,
|
||||
s3_emb_dim = 384,
|
||||
s3_emb_kernel = 3,
|
||||
s3_emb_stride = 2,
|
||||
s3_proj_kernel = 3,
|
||||
s3_kv_proj_stride = 2,
|
||||
s3_heads = 4,
|
||||
s3_depth = 10,
|
||||
s3_mlp_mult = 4,
|
||||
dropout = 0.
|
||||
)
|
||||
|
||||
learner = EsViTTrainer(
|
||||
cvt,
|
||||
image_size = 256,
|
||||
hidden_layer = 'layers', # hidden layer name or index, from which to extract the embedding
|
||||
projection_hidden_size = 256, # projector network hidden dimension
|
||||
projection_layers = 4, # number of layers in projection network
|
||||
num_classes_K = 65336, # output logits dimensions (referenced as K in paper)
|
||||
student_temp = 0.9, # student temperature
|
||||
teacher_temp = 0.04, # teacher temperature, needs to be annealed from 0.04 to 0.07 over 30 epochs
|
||||
local_upper_crop_scale = 0.4, # upper bound for local crop - 0.4 was recommended in the paper
|
||||
global_lower_crop_scale = 0.5, # lower bound for global crop - 0.5 was recommended in the paper
|
||||
moving_average_decay = 0.9, # moving average of encoder - paper showed anywhere from 0.9 to 0.999 was ok
|
||||
center_moving_average_decay = 0.9, # moving average of teacher centers - paper showed anywhere from 0.9 to 0.999 was ok
|
||||
)
|
||||
|
||||
opt = torch.optim.AdamW(learner.parameters(), lr = 3e-4)
|
||||
|
||||
def sample_unlabelled_images():
|
||||
return torch.randn(8, 3, 256, 256)
|
||||
|
||||
for _ in range(1000):
|
||||
images = sample_unlabelled_images()
|
||||
loss = learner(images)
|
||||
opt.zero_grad()
|
||||
loss.backward()
|
||||
opt.step()
|
||||
learner.update_moving_average() # update moving average of teacher encoder and teacher centers
|
||||
|
||||
# save your improved network
|
||||
torch.save(cvt.state_dict(), './pretrained-net.pt')
|
||||
```
|
||||
|
||||
## Accessing Attention
|
||||
|
||||
If you would like to visualize the attention weights (post-softmax) for your research, just follow the procedure below
|
||||
@@ -1584,6 +1659,16 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@article{Li2021EfficientSV,
|
||||
title = {Efficient Self-supervised Vision Transformers for Representation Learning},
|
||||
author = {Chunyuan Li and Jianwei Yang and Pengchuan Zhang and Mei Gao and Bin Xiao and Xiyang Dai and Lu Yuan and Jianfeng Gao},
|
||||
journal = {ArXiv},
|
||||
year = {2021},
|
||||
volume = {abs/2106.09785}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{vaswani2017attention,
|
||||
title = {Attention Is All You Need},
|
||||
|
||||
BIN
images/esvit.png
Normal file
BIN
images/esvit.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 190 KiB |
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '0.33.2',
|
||||
version = '0.34.1',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -164,12 +164,14 @@ class CvT(nn.Module):
|
||||
|
||||
dim = config['emb_dim']
|
||||
|
||||
self.layers = nn.Sequential(
|
||||
*layers,
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
self.to_logits = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d(1),
|
||||
Rearrange('... () () -> ...'),
|
||||
nn.Linear(dim, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
latents = self.layers(x)
|
||||
return self.to_logits(latents)
|
||||
|
||||
367
vit_pytorch/es_vit.py
Normal file
367
vit_pytorch/es_vit.py
Normal file
@@ -0,0 +1,367 @@
|
||||
import copy
|
||||
import random
|
||||
from functools import wraps, partial
|
||||
|
||||
import torch
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
from torchvision import transforms as T
|
||||
|
||||
from einops import rearrange, reduce, repeat
|
||||
|
||||
# helper functions
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def default(val, default):
|
||||
return val if exists(val) else default
|
||||
|
||||
def singleton(cache_key):
|
||||
def inner_fn(fn):
|
||||
@wraps(fn)
|
||||
def wrapper(self, *args, **kwargs):
|
||||
instance = getattr(self, cache_key)
|
||||
if instance is not None:
|
||||
return instance
|
||||
|
||||
instance = fn(self, *args, **kwargs)
|
||||
setattr(self, cache_key, instance)
|
||||
return instance
|
||||
return wrapper
|
||||
return inner_fn
|
||||
|
||||
def get_module_device(module):
|
||||
return next(module.parameters()).device
|
||||
|
||||
def set_requires_grad(model, val):
|
||||
for p in model.parameters():
|
||||
p.requires_grad = val
|
||||
|
||||
# tensor related helpers
|
||||
|
||||
def log(t, eps = 1e-20):
|
||||
return torch.log(t + eps)
|
||||
|
||||
# loss function # (algorithm 1 in the paper)
|
||||
|
||||
def view_loss_fn(
|
||||
teacher_logits,
|
||||
student_logits,
|
||||
teacher_temp,
|
||||
student_temp,
|
||||
centers,
|
||||
eps = 1e-20
|
||||
):
|
||||
teacher_logits = teacher_logits.detach()
|
||||
student_probs = (student_logits / student_temp).softmax(dim = -1)
|
||||
teacher_probs = ((teacher_logits - centers) / teacher_temp).softmax(dim = -1)
|
||||
return - (teacher_probs * log(student_probs, eps)).sum(dim = -1).mean()
|
||||
|
||||
def region_loss_fn(
|
||||
teacher_logits,
|
||||
student_logits,
|
||||
teacher_latent,
|
||||
student_latent,
|
||||
teacher_temp,
|
||||
student_temp,
|
||||
centers,
|
||||
eps = 1e-20
|
||||
):
|
||||
teacher_logits = teacher_logits.detach()
|
||||
student_probs = (student_logits / student_temp).softmax(dim = -1)
|
||||
teacher_probs = ((teacher_logits - centers) / teacher_temp).softmax(dim = -1)
|
||||
|
||||
sim_matrix = einsum('b i d, b j d -> b i j', student_latent, teacher_latent)
|
||||
sim_indices = sim_matrix.max(dim = -1).indices
|
||||
sim_indices = repeat(sim_indices, 'b n -> b n k', k = teacher_probs.shape[-1])
|
||||
max_sim_teacher_probs = teacher_probs.gather(1, sim_indices)
|
||||
|
||||
return - (max_sim_teacher_probs * log(student_probs, eps)).sum(dim = -1).mean()
|
||||
|
||||
# augmentation utils
|
||||
|
||||
class RandomApply(nn.Module):
|
||||
def __init__(self, fn, p):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
self.p = p
|
||||
|
||||
def forward(self, x):
|
||||
if random.random() > self.p:
|
||||
return x
|
||||
return self.fn(x)
|
||||
|
||||
# exponential moving average
|
||||
|
||||
class EMA():
|
||||
def __init__(self, beta):
|
||||
super().__init__()
|
||||
self.beta = beta
|
||||
|
||||
def update_average(self, old, new):
|
||||
if old is None:
|
||||
return new
|
||||
return old * self.beta + (1 - self.beta) * new
|
||||
|
||||
def update_moving_average(ema_updater, ma_model, current_model):
|
||||
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
|
||||
old_weight, up_weight = ma_params.data, current_params.data
|
||||
ma_params.data = ema_updater.update_average(old_weight, up_weight)
|
||||
|
||||
# MLP class for projector and predictor
|
||||
|
||||
class L2Norm(nn.Module):
|
||||
def forward(self, x, eps = 1e-6):
|
||||
return F.normalize(x, dim = 1, eps = eps)
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, dim, dim_out, num_layers, hidden_size = 256):
|
||||
super().__init__()
|
||||
|
||||
layers = []
|
||||
dims = (dim, *((hidden_size,) * (num_layers - 1)))
|
||||
|
||||
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
is_last = ind == (len(dims) - 1)
|
||||
|
||||
layers.extend([
|
||||
nn.Linear(layer_dim_in, layer_dim_out),
|
||||
nn.GELU() if not is_last else nn.Identity()
|
||||
])
|
||||
|
||||
self.net = nn.Sequential(
|
||||
*layers,
|
||||
L2Norm(),
|
||||
nn.Linear(hidden_size, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# a wrapper class for the base neural network
|
||||
# will manage the interception of the hidden layer output
|
||||
# and pipe it into the projecter and predictor nets
|
||||
|
||||
class NetWrapper(nn.Module):
|
||||
def __init__(self, net, output_dim, projection_hidden_size, projection_num_layers, layer = -2):
|
||||
super().__init__()
|
||||
self.net = net
|
||||
self.layer = layer
|
||||
|
||||
self.view_projector = None
|
||||
self.region_projector = None
|
||||
self.projection_hidden_size = projection_hidden_size
|
||||
self.projection_num_layers = projection_num_layers
|
||||
self.output_dim = output_dim
|
||||
|
||||
self.hidden = {}
|
||||
self.hook_registered = False
|
||||
|
||||
def _find_layer(self):
|
||||
if type(self.layer) == str:
|
||||
modules = dict([*self.net.named_modules()])
|
||||
return modules.get(self.layer, None)
|
||||
elif type(self.layer) == int:
|
||||
children = [*self.net.children()]
|
||||
return children[self.layer]
|
||||
return None
|
||||
|
||||
def _hook(self, _, input, output):
|
||||
device = input[0].device
|
||||
self.hidden[device] = output
|
||||
|
||||
def _register_hook(self):
|
||||
layer = self._find_layer()
|
||||
assert layer is not None, f'hidden layer ({self.layer}) not found'
|
||||
handle = layer.register_forward_hook(self._hook)
|
||||
self.hook_registered = True
|
||||
|
||||
@singleton('view_projector')
|
||||
def _get_view_projector(self, hidden):
|
||||
dim = hidden.shape[1]
|
||||
projector = MLP(dim, self.output_dim, self.projection_num_layers, self.projection_hidden_size)
|
||||
return projector.to(hidden)
|
||||
|
||||
@singleton('region_projector')
|
||||
def _get_region_projector(self, hidden):
|
||||
dim = hidden.shape[1]
|
||||
projector = MLP(dim, self.output_dim, self.projection_num_layers, self.projection_hidden_size)
|
||||
return projector.to(hidden)
|
||||
|
||||
def get_embedding(self, x):
|
||||
if self.layer == -1:
|
||||
return self.net(x)
|
||||
|
||||
if not self.hook_registered:
|
||||
self._register_hook()
|
||||
|
||||
self.hidden.clear()
|
||||
_ = self.net(x)
|
||||
hidden = self.hidden[x.device]
|
||||
self.hidden.clear()
|
||||
|
||||
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
|
||||
return hidden
|
||||
|
||||
def forward(self, x, return_projection = True):
|
||||
region_latents = self.get_embedding(x)
|
||||
global_latent = reduce(region_latents, 'b c h w -> b c', 'mean')
|
||||
|
||||
if not return_projection:
|
||||
return global_latent, region_latents
|
||||
|
||||
view_projector = self._get_view_projector(global_latent)
|
||||
region_projector = self._get_region_projector(region_latents)
|
||||
|
||||
region_latents = rearrange(region_latents, 'b c h w -> b (h w) c')
|
||||
|
||||
return view_projector(global_latent), region_projector(region_latents), region_latents
|
||||
|
||||
# main class
|
||||
|
||||
class EsViTTrainer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
net,
|
||||
image_size,
|
||||
hidden_layer = -2,
|
||||
projection_hidden_size = 256,
|
||||
num_classes_K = 65336,
|
||||
projection_layers = 4,
|
||||
student_temp = 0.9,
|
||||
teacher_temp = 0.04,
|
||||
local_upper_crop_scale = 0.4,
|
||||
global_lower_crop_scale = 0.5,
|
||||
moving_average_decay = 0.9,
|
||||
center_moving_average_decay = 0.9,
|
||||
augment_fn = None,
|
||||
augment_fn2 = None
|
||||
):
|
||||
super().__init__()
|
||||
self.net = net
|
||||
|
||||
# default BYOL augmentation
|
||||
|
||||
DEFAULT_AUG = torch.nn.Sequential(
|
||||
RandomApply(
|
||||
T.ColorJitter(0.8, 0.8, 0.8, 0.2),
|
||||
p = 0.3
|
||||
),
|
||||
T.RandomGrayscale(p=0.2),
|
||||
T.RandomHorizontalFlip(),
|
||||
RandomApply(
|
||||
T.GaussianBlur((3, 3), (1.0, 2.0)),
|
||||
p = 0.2
|
||||
),
|
||||
T.Normalize(
|
||||
mean=torch.tensor([0.485, 0.456, 0.406]),
|
||||
std=torch.tensor([0.229, 0.224, 0.225])),
|
||||
)
|
||||
|
||||
self.augment1 = default(augment_fn, DEFAULT_AUG)
|
||||
self.augment2 = default(augment_fn2, DEFAULT_AUG)
|
||||
|
||||
# local and global crops
|
||||
|
||||
self.local_crop = T.RandomResizedCrop((image_size, image_size), scale = (0.05, local_upper_crop_scale))
|
||||
self.global_crop = T.RandomResizedCrop((image_size, image_size), scale = (global_lower_crop_scale, 1.))
|
||||
|
||||
self.student_encoder = NetWrapper(net, num_classes_K, projection_hidden_size, projection_layers, layer = hidden_layer)
|
||||
|
||||
self.teacher_encoder = None
|
||||
self.teacher_ema_updater = EMA(moving_average_decay)
|
||||
|
||||
self.register_buffer('teacher_view_centers', torch.zeros(1, num_classes_K))
|
||||
self.register_buffer('last_teacher_view_centers', torch.zeros(1, num_classes_K))
|
||||
|
||||
self.register_buffer('teacher_region_centers', torch.zeros(1, num_classes_K))
|
||||
self.register_buffer('last_teacher_region_centers', torch.zeros(1, num_classes_K))
|
||||
|
||||
self.teacher_centering_ema_updater = EMA(center_moving_average_decay)
|
||||
|
||||
self.student_temp = student_temp
|
||||
self.teacher_temp = teacher_temp
|
||||
|
||||
# get device of network and make wrapper same device
|
||||
device = get_module_device(net)
|
||||
self.to(device)
|
||||
|
||||
# send a mock image tensor to instantiate singleton parameters
|
||||
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
|
||||
|
||||
@singleton('teacher_encoder')
|
||||
def _get_teacher_encoder(self):
|
||||
teacher_encoder = copy.deepcopy(self.student_encoder)
|
||||
set_requires_grad(teacher_encoder, False)
|
||||
return teacher_encoder
|
||||
|
||||
def reset_moving_average(self):
|
||||
del self.teacher_encoder
|
||||
self.teacher_encoder = None
|
||||
|
||||
def update_moving_average(self):
|
||||
assert self.teacher_encoder is not None, 'target encoder has not been created yet'
|
||||
update_moving_average(self.teacher_ema_updater, self.teacher_encoder, self.student_encoder)
|
||||
|
||||
new_teacher_view_centers = self.teacher_centering_ema_updater.update_average(self.teacher_view_centers, self.last_teacher_view_centers)
|
||||
self.teacher_view_centers.copy_(new_teacher_view_centers)
|
||||
|
||||
new_teacher_region_centers = self.teacher_centering_ema_updater.update_average(self.teacher_region_centers, self.last_teacher_region_centers)
|
||||
self.teacher_region_centers.copy_(new_teacher_region_centers)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
return_embedding = False,
|
||||
return_projection = True,
|
||||
student_temp = None,
|
||||
teacher_temp = None
|
||||
):
|
||||
if return_embedding:
|
||||
return self.student_encoder(x, return_projection = return_projection)
|
||||
|
||||
image_one, image_two = self.augment1(x), self.augment2(x)
|
||||
|
||||
local_image_one, local_image_two = self.local_crop(image_one), self.local_crop(image_two)
|
||||
global_image_one, global_image_two = self.global_crop(image_one), self.global_crop(image_two)
|
||||
|
||||
student_view_proj_one, student_region_proj_one, student_latent_one = self.student_encoder(local_image_one)
|
||||
student_view_proj_two, student_region_proj_two, student_latent_two = self.student_encoder(local_image_two)
|
||||
|
||||
with torch.no_grad():
|
||||
teacher_encoder = self._get_teacher_encoder()
|
||||
teacher_view_proj_one, teacher_region_proj_one, teacher_latent_one = teacher_encoder(global_image_one)
|
||||
teacher_view_proj_two, teacher_region_proj_two, teacher_latent_two = teacher_encoder(global_image_two)
|
||||
|
||||
view_loss_fn_ = partial(
|
||||
view_loss_fn,
|
||||
student_temp = default(student_temp, self.student_temp),
|
||||
teacher_temp = default(teacher_temp, self.teacher_temp),
|
||||
centers = self.teacher_view_centers
|
||||
)
|
||||
|
||||
region_loss_fn_ = partial(
|
||||
region_loss_fn,
|
||||
student_temp = default(student_temp, self.student_temp),
|
||||
teacher_temp = default(teacher_temp, self.teacher_temp),
|
||||
centers = self.teacher_region_centers
|
||||
)
|
||||
|
||||
# calculate view-level loss
|
||||
|
||||
teacher_view_logits_avg = torch.cat((teacher_view_proj_one, teacher_view_proj_two)).mean(dim = 0)
|
||||
self.last_teacher_view_centers.copy_(teacher_view_logits_avg)
|
||||
|
||||
teacher_region_logits_avg = torch.cat((teacher_region_proj_one, teacher_region_proj_two)).mean(dim = (0, 1))
|
||||
self.last_teacher_region_centers.copy_(teacher_region_logits_avg)
|
||||
|
||||
view_loss = (view_loss_fn_(teacher_view_proj_one, student_view_proj_two) \
|
||||
+ view_loss_fn_(teacher_view_proj_two, student_view_proj_one)) / 2
|
||||
|
||||
# calculate region-level loss
|
||||
|
||||
region_loss = (region_loss_fn_(teacher_region_proj_one, student_region_proj_two, teacher_latent_one, student_latent_two) \
|
||||
+ region_loss_fn_(teacher_region_proj_two, student_region_proj_one, teacher_latent_two, student_latent_one)) / 2
|
||||
|
||||
return (view_loss + region_loss) / 2
|
||||
Reference in New Issue
Block a user