This commit is contained in:
Phil Wang
2020-12-25 09:30:38 -08:00
parent 4a6469eecc
commit 5918f301a2

View File

@@ -43,6 +43,36 @@ class DistillableViT(ViT):
x = self.to_latent(x)
return self.mlp_head(x), distill_tokens
class DistillableEfficientViT(EfficientViT):
def __init__(self, *args, **kwargs):
super(DistillableEfficientViT, self).__init__(*args, **kwargs)
self.dim = kwargs['dim']
self.num_classes = kwargs['num_classes']
def forward(self, img, distill_token, mask = None):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding[:, :(n + 1)]
distill_tokens = repeat(distill_token, '() n d -> b n d', b = b)
x = torch.cat((x, distill_tokens), dim = 1)
x = self.transformer(x)
x, distill_tokens = x[:, :-1], x[:, -1]
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x), distill_tokens
# knowledge distillation wrapper
class DistillWrapper(nn.Module):
def __init__(
self,
@@ -53,11 +83,7 @@ class DistillWrapper(nn.Module):
alpha = 0.5
):
super().__init__()
assert (
isinstance(student, DistillableViT)
or
isinstance(student, DistillableEfficientViT)
) , 'student must be a vision transformer'
assert (isinstance(student, (DistillableViT, DistillableEfficientViT))) , 'student must be a vision transformer'
self.teacher = teacher
self.student = student
@@ -95,33 +121,3 @@ class DistillWrapper(nn.Module):
distill_loss *= T ** 2
return loss * alpha + distill_loss * (1 - alpha)
class DistillableEfficientViT(EfficientViT):
def __init__(self, *args, **kwargs):
super(DistillableEfficientViT, self).__init__(*args, **kwargs)
self.dim = kwargs['dim']
self.num_classes = kwargs['num_classes']
def forward(self, img, distill_token, mask = None):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding[:, :(n + 1)]
distill_tokens = repeat(distill_token, '() n d -> b n d', b = b)
x = torch.cat((x, distill_tokens), dim = 1)
x = self.transformer(x)
x, distill_tokens = x[:, :-1], x[:, -1]
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x), distill_tokens