diff --git a/README.md b/README.md index d4cfdf6..3be2dc0 100644 --- a/README.md +++ b/README.md @@ -28,6 +28,7 @@ - [Patch Merger](#patch-merger) - [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets) - [Parallel ViT](#parallel-vit) +- [Learnable Memory ViT](#learnable-memory-vit) - [Dino](#dino) - [Accessing Attention](#accessing-attention) - [Research Ideas](#research-ideas) @@ -903,6 +904,61 @@ img = torch.randn(4, 3, 256, 256) preds = v(img) # (4, 1000) ``` +## Learnable Memory ViT + + + +This paper shows that adding learnable memory tokens at each layer of a vision transformer can greatly enhance fine-tuning results (in addition to learnable task specific CLS token and adapter head). + +You can use this with a specially modified `ViT` as follows + +```python +import torch +from vit_pytorch.learnable_memory_vit import ViT, Adapter + +# normal base ViT + +v = ViT( + image_size = 256, + patch_size = 16, + num_classes = 1000, + dim = 1024, + depth = 6, + heads = 8, + mlp_dim = 2048, + dropout = 0.1, + emb_dropout = 0.1 +) + +img = torch.randn(4, 3, 256, 256) +logits = v(img) # (4, 1000) + +# do your usual training with ViT +# ... + + +# then, to finetune, just pass the ViT into the Adapter class +# you can do this for multiple Adapters, as shown below + +adapter1 = Adapter( + vit = v, + num_classes = 2, # number of output classes for this specific task + num_memories_per_layer = 5 # number of learnable memories per layer, 10 was sufficient in paper +) + +logits1 = adapter1(img) # (4, 2) - predict 2 classes off frozen ViT backbone with learnable memories and task specific head + +# yet another task to finetune on, this time with 4 classes + +adapter2 = Adapter( + vit = v, + num_classes = 4, + num_memories_per_layer = 10 +) + +logits2 = adapter2(img) # (4, 4) - predict 4 classes off frozen ViT backbone with learnable memories and task specific head + +``` ## Dino @@ -1442,6 +1498,14 @@ Coming from computer vision and new to transformers? Here are some resources tha } ``` +```bibtex +@inproceedings{Sandler2022FinetuningIT, + title = {Fine-tuning Image Transformers using Learnable Memory}, + author = {Mark Sandler and Andrey Zhmoginov and Max Vladymyrov and Andrew Jackson}, + year = {2022} +} +``` + ```bibtex @misc{vaswani2017attention, title = {Attention Is All You Need}, diff --git a/images/learnable-memory-vit.png b/images/learnable-memory-vit.png new file mode 100644 index 0000000..e26ffcd Binary files /dev/null and b/images/learnable-memory-vit.png differ diff --git a/setup.py b/setup.py index 7b05251..52933b2 100644 --- a/setup.py +++ b/setup.py @@ -3,7 +3,7 @@ from setuptools import setup, find_packages setup( name = 'vit-pytorch', packages = find_packages(exclude=['examples']), - version = '0.30.0', + version = '0.31.0', license='MIT', description = 'Vision Transformer (ViT) - Pytorch', author = 'Phil Wang', diff --git a/vit_pytorch/learnable_memory_vit.py b/vit_pytorch/learnable_memory_vit.py new file mode 100644 index 0000000..7764052 --- /dev/null +++ b/vit_pytorch/learnable_memory_vit.py @@ -0,0 +1,216 @@ +import torch +from torch import nn +import torch.nn.functional as F + +from einops import rearrange, repeat +from einops.layers.torch import Rearrange + +# helpers + +def exists(val): + return val is not None + +def pair(t): + return t if isinstance(t, tuple) else (t, t) + +# controlling freezing of layers + +def set_module_requires_grad_(module, requires_grad): + for param in module.parameters(): + param.requires_grad = requires_grad + +def freeze_all_layers_(module): + set_module_requires_grad_(module, False) + +def unfreeze_all_layers_(module): + set_module_requires_grad_(module, True) + +# classes + +class FeedForward(nn.Module): + def __init__(self, dim, hidden_dim, dropout = 0.): + super().__init__() + self.net = nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, hidden_dim), + nn.GELU(), + nn.Dropout(dropout), + nn.Linear(hidden_dim, dim), + nn.Dropout(dropout) + ) + def forward(self, x): + return self.net(x) + +class Attention(nn.Module): + def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): + super().__init__() + inner_dim = dim_head * heads + + self.heads = heads + self.scale = dim_head ** -0.5 + self.norm = nn.LayerNorm(dim) + + self.attend = nn.Softmax(dim = -1) + self.dropout = nn.Dropout(dropout) + + self.to_q = nn.Linear(dim, inner_dim, bias = False) + self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, dim), + nn.Dropout(dropout) + ) + + def forward(self, x, attn_mask = None, memories = None): + x = self.norm(x) + + x_kv = x # input for key / values projection + + if exists(memories): + # add memories to key / values if it is passed in + memories = repeat(memories, 'n d -> b n d', b = x.shape[0]) if memories.ndim == 2 else memories + x_kv = torch.cat((x_kv, memories), dim = 1) + + qkv = (self.to_q(x), *self.to_kv(x_kv).chunk(2, dim = -1)) + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) + + dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale + + if exists(attn_mask): + dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max) + + attn = self.attend(dots) + attn = self.dropout(attn) + + out = torch.matmul(attn, v) + out = rearrange(out, 'b h n d -> b n (h d)') + return self.to_out(out) + +class Transformer(nn.Module): + def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): + super().__init__() + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append(nn.ModuleList([ + Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), + FeedForward(dim, mlp_dim, dropout = dropout) + ])) + + def forward(self, x, attn_mask = None, memories = None): + for ind, (attn, ff) in enumerate(self.layers): + layer_memories = memories[ind] if exists(memories) else None + + x = attn(x, attn_mask = attn_mask, memories = layer_memories) + x + x = ff(x) + x + return x + +class ViT(nn.Module): + def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): + super().__init__() + image_height, image_width = pair(image_size) + patch_height, patch_width = pair(patch_size) + + assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' + + num_patches = (image_height // patch_height) * (image_width // patch_width) + patch_dim = channels * patch_height * patch_width + assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' + + self.to_patch_embedding = nn.Sequential( + Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), + nn.Linear(patch_dim, dim), + ) + + self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) + self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) + self.dropout = nn.Dropout(emb_dropout) + + self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) + + self.mlp_head = nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, num_classes) + ) + + def img_to_tokens(self, img): + x = self.to_patch_embedding(img) + + cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = x.shape[0]) + x = torch.cat((cls_tokens, x), dim = 1) + + x += self.pos_embedding + x = self.dropout(x) + return x + + def forward(self, img): + x = self.img_to_tokens(img) + + x = self.transformer(x) + + cls_tokens = x[:, 0] + return self.mlp_head(cls_tokens) + +# adapter with learnable memories per layer, memory CLS token, and learnable adapter head + +class Adapter(nn.Module): + def __init__( + self, + *, + vit, + num_memories_per_layer = 10, + num_classes = 2, + ): + super().__init__() + assert isinstance(vit, ViT) + + # extract some model variables needed + + dim = vit.cls_token.shape[-1] + layers = len(vit.transformer.layers) + num_patches = vit.pos_embedding.shape[-2] + + self.vit = vit + + # freeze ViT backbone - only memories will be finetuned + + freeze_all_layers_(vit) + + # learnable parameters + + self.memory_cls_token = nn.Parameter(torch.randn(dim)) + self.memories_per_layer = nn.Parameter(torch.randn(layers, num_memories_per_layer, dim)) + + self.mlp_head = nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, num_classes) + ) + + # specialized attention mask to preserve the output of the original ViT + # it allows the memory CLS token to attend to all other tokens (and the learnable memory layer tokens), but not vice versa + + attn_mask = torch.ones((num_patches, num_patches), dtype = torch.bool) + attn_mask = F.pad(attn_mask, (1, num_memories_per_layer), value = False) # main tokens cannot attend to learnable memories per layer + attn_mask = F.pad(attn_mask, (0, 0, 1, 0), value = True) # memory CLS token can attend to everything + self.register_buffer('attn_mask', attn_mask) + + def forward(self, img): + b = img.shape[0] + + tokens = self.vit.img_to_tokens(img) + + # add task specific memory tokens + + memory_cls_tokens = repeat(self.memory_cls_token, 'd -> b 1 d', b = b) + tokens = torch.cat((memory_cls_tokens, tokens), dim = 1) + + # pass memories along with image tokens through transformer for attending + + out = self.vit.transformer(tokens, memories = self.memories_per_layer, attn_mask = self.attn_mask) + + # extract memory CLS tokens + + memory_cls_tokens = out[:, 0] + + # pass through task specific adapter head + + return self.mlp_head(memory_cls_tokens) diff --git a/vit_pytorch/vit.py b/vit_pytorch/vit.py index 8dc01a2..5d194ea 100644 --- a/vit_pytorch/vit.py +++ b/vit_pytorch/vit.py @@ -114,7 +114,7 @@ class ViT(nn.Module): x = self.to_patch_embedding(img) b, n, _ = x.shape - cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) + cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x)