complete learnable memory ViT, for efficient fine-tuning and potentially plays into continual learning

This commit is contained in:
Phil Wang
2022-03-31 09:51:12 -07:00
parent 4e6a42a0ca
commit df656fe7c7
5 changed files with 282 additions and 2 deletions

View File

@@ -28,6 +28,7 @@
- [Patch Merger](#patch-merger) - [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets) - [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [Parallel ViT](#parallel-vit) - [Parallel ViT](#parallel-vit)
- [Learnable Memory ViT](#learnable-memory-vit)
- [Dino](#dino) - [Dino](#dino)
- [Accessing Attention](#accessing-attention) - [Accessing Attention](#accessing-attention)
- [Research Ideas](#research-ideas) - [Research Ideas](#research-ideas)
@@ -903,6 +904,61 @@ img = torch.randn(4, 3, 256, 256)
preds = v(img) # (4, 1000) preds = v(img) # (4, 1000)
``` ```
## Learnable Memory ViT
<img src="./images/learnable-memory-vit.png" width="350px"></img>
This <a href="https://arxiv.org/abs/2203.15243">paper</a> shows that adding learnable memory tokens at each layer of a vision transformer can greatly enhance fine-tuning results (in addition to learnable task specific CLS token and adapter head).
You can use this with a specially modified `ViT` as follows
```python
import torch
from vit_pytorch.learnable_memory_vit import ViT, Adapter
# normal base ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
logits = v(img) # (4, 1000)
# do your usual training with ViT
# ...
# then, to finetune, just pass the ViT into the Adapter class
# you can do this for multiple Adapters, as shown below
adapter1 = Adapter(
vit = v,
num_classes = 2, # number of output classes for this specific task
num_memories_per_layer = 5 # number of learnable memories per layer, 10 was sufficient in paper
)
logits1 = adapter1(img) # (4, 2) - predict 2 classes off frozen ViT backbone with learnable memories and task specific head
# yet another task to finetune on, this time with 4 classes
adapter2 = Adapter(
vit = v,
num_classes = 4,
num_memories_per_layer = 10
)
logits2 = adapter2(img) # (4, 4) - predict 4 classes off frozen ViT backbone with learnable memories and task specific head
```
## Dino ## Dino
@@ -1442,6 +1498,14 @@ Coming from computer vision and new to transformers? Here are some resources tha
} }
``` ```
```bibtex
@inproceedings{Sandler2022FinetuningIT,
title = {Fine-tuning Image Transformers using Learnable Memory},
author = {Mark Sandler and Andrey Zhmoginov and Max Vladymyrov and Andrew Jackson},
year = {2022}
}
```
```bibtex ```bibtex
@misc{vaswani2017attention, @misc{vaswani2017attention,
title = {Attention Is All You Need}, title = {Attention Is All You Need},

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup( setup(
name = 'vit-pytorch', name = 'vit-pytorch',
packages = find_packages(exclude=['examples']), packages = find_packages(exclude=['examples']),
version = '0.30.0', version = '0.31.0',
license='MIT', license='MIT',
description = 'Vision Transformer (ViT) - Pytorch', description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang', author = 'Phil Wang',

View File

@@ -0,0 +1,216 @@
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# controlling freezing of layers
def set_module_requires_grad_(module, requires_grad):
for param in module.parameters():
param.requires_grad = requires_grad
def freeze_all_layers_(module):
set_module_requires_grad_(module, False)
def unfreeze_all_layers_(module):
set_module_requires_grad_(module, True)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, attn_mask = None, memories = None):
x = self.norm(x)
x_kv = x # input for key / values projection
if exists(memories):
# add memories to key / values if it is passed in
memories = repeat(memories, 'n d -> b n d', b = x.shape[0]) if memories.ndim == 2 else memories
x_kv = torch.cat((x_kv, memories), dim = 1)
qkv = (self.to_q(x), *self.to_kv(x_kv).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
if exists(attn_mask):
dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max)
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x, attn_mask = None, memories = None):
for ind, (attn, ff) in enumerate(self.layers):
layer_memories = memories[ind] if exists(memories) else None
x = attn(x, attn_mask = attn_mask, memories = layer_memories) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def img_to_tokens(self, img):
x = self.to_patch_embedding(img)
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = x.shape[0])
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding
x = self.dropout(x)
return x
def forward(self, img):
x = self.img_to_tokens(img)
x = self.transformer(x)
cls_tokens = x[:, 0]
return self.mlp_head(cls_tokens)
# adapter with learnable memories per layer, memory CLS token, and learnable adapter head
class Adapter(nn.Module):
def __init__(
self,
*,
vit,
num_memories_per_layer = 10,
num_classes = 2,
):
super().__init__()
assert isinstance(vit, ViT)
# extract some model variables needed
dim = vit.cls_token.shape[-1]
layers = len(vit.transformer.layers)
num_patches = vit.pos_embedding.shape[-2]
self.vit = vit
# freeze ViT backbone - only memories will be finetuned
freeze_all_layers_(vit)
# learnable parameters
self.memory_cls_token = nn.Parameter(torch.randn(dim))
self.memories_per_layer = nn.Parameter(torch.randn(layers, num_memories_per_layer, dim))
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
# specialized attention mask to preserve the output of the original ViT
# it allows the memory CLS token to attend to all other tokens (and the learnable memory layer tokens), but not vice versa
attn_mask = torch.ones((num_patches, num_patches), dtype = torch.bool)
attn_mask = F.pad(attn_mask, (1, num_memories_per_layer), value = False) # main tokens cannot attend to learnable memories per layer
attn_mask = F.pad(attn_mask, (0, 0, 1, 0), value = True) # memory CLS token can attend to everything
self.register_buffer('attn_mask', attn_mask)
def forward(self, img):
b = img.shape[0]
tokens = self.vit.img_to_tokens(img)
# add task specific memory tokens
memory_cls_tokens = repeat(self.memory_cls_token, 'd -> b 1 d', b = b)
tokens = torch.cat((memory_cls_tokens, tokens), dim = 1)
# pass memories along with image tokens through transformer for attending
out = self.vit.transformer(tokens, memories = self.memories_per_layer, attn_mask = self.attn_mask)
# extract memory CLS tokens
memory_cls_tokens = out[:, 0]
# pass through task specific adapter head
return self.mlp_head(memory_cls_tokens)

View File

@@ -114,7 +114,7 @@ class ViT(nn.Module):
x = self.to_patch_embedding(img) x = self.to_patch_embedding(img)
b, n, _ = x.shape b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1) x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)] x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x) x = self.dropout(x)