mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
add masking
This commit is contained in:
@@ -27,7 +27,9 @@ v = ViT(
|
||||
)
|
||||
|
||||
img = torch.randn(1, 3, 256, 256)
|
||||
preds = v(img) # (1, 1000)
|
||||
mask = torch.ones(1, 8, 8).bool() # optional mask, designating which patch to attend to
|
||||
|
||||
preds = v(img, mask = mask) # (1, 1000)
|
||||
```
|
||||
|
||||
## Suggestion
|
||||
|
||||
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(),
|
||||
version = '0.0.3',
|
||||
version = '0.0.4',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch import nn
|
||||
|
||||
@@ -6,16 +7,16 @@ class Residual(nn.Module):
|
||||
def __init__(self, fn):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
def forward(self, x):
|
||||
return self.fn(x) + x
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(x, **kwargs) + x
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x):
|
||||
return self.fn(self.norm(x))
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim):
|
||||
@@ -36,12 +37,21 @@ class Attention(nn.Module):
|
||||
|
||||
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
|
||||
self.to_out = nn.Linear(dim, dim)
|
||||
def forward(self, x):
|
||||
def forward(self, x, mask = None):
|
||||
b, n, _, h = *x.shape, self.heads
|
||||
qkv = self.to_qkv(x)
|
||||
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = h)
|
||||
|
||||
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
|
||||
|
||||
if mask is not None:
|
||||
mask = F.pad(mask.flatten(1), (1, 0), value = True)
|
||||
print(mask.shape[-1], dots.shape[-1])
|
||||
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
|
||||
mask = mask[:, None, :] * mask[:, :, None]
|
||||
dots.masked_fill_(~mask, float('-inf'))
|
||||
del mask
|
||||
|
||||
attn = dots.softmax(dim=-1)
|
||||
|
||||
out = torch.einsum('bhij,bhjd->bhid', attn, v)
|
||||
@@ -52,15 +62,17 @@ class Attention(nn.Module):
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, mlp_dim):
|
||||
super().__init__()
|
||||
layers = []
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
layers.extend([
|
||||
self.layers.append(nn.ModuleList([
|
||||
Residual(PreNorm(dim, Attention(dim, heads = heads))),
|
||||
Residual(PreNorm(dim, FeedForward(dim, mlp_dim)))
|
||||
])
|
||||
self.net = nn.Sequential(*layers)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
]))
|
||||
def forward(self, x, mask = None):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x, mask = mask)
|
||||
x = ff(x)
|
||||
return x
|
||||
|
||||
class ViT(nn.Module):
|
||||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3):
|
||||
@@ -84,7 +96,7 @@ class ViT(nn.Module):
|
||||
nn.Linear(mlp_dim, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, img):
|
||||
def forward(self, img, mask = None):
|
||||
p = self.patch_size
|
||||
|
||||
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
|
||||
@@ -93,7 +105,7 @@ class ViT(nn.Module):
|
||||
cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
x += self.pos_embedding
|
||||
x = self.transformer(x)
|
||||
x = self.transformer(x, mask)
|
||||
|
||||
x = self.to_cls_token(x[:, 0])
|
||||
return self.mlp_head(x)
|
||||
|
||||
Reference in New Issue
Block a user