mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
some register tokens cannot hurt for VAT
This commit is contained in:
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "vit-pytorch"
|
||||
version = "1.14.4"
|
||||
version = "1.14.5"
|
||||
description = "Vision Transformer (ViT) - Pytorch"
|
||||
readme = { file = "README.md", content-type = "text/markdown" }
|
||||
license = { file = "LICENSE" }
|
||||
|
||||
@@ -178,7 +178,8 @@ class ViT(Module):
|
||||
channels = 3,
|
||||
dim_head = 64,
|
||||
dropout = 0.,
|
||||
emb_dropout = 0.
|
||||
emb_dropout = 0.,
|
||||
num_register_tokens = 0
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
@@ -200,8 +201,8 @@ class ViT(Module):
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(dim))
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
|
||||
@@ -211,13 +212,19 @@ class ViT(Module):
|
||||
|
||||
self.mlp_head = nn.Linear(dim, num_classes)
|
||||
|
||||
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim) * 1e-2)
|
||||
|
||||
def forward(self, img, return_hiddens = False):
|
||||
x = self.to_patch_embedding(img)
|
||||
b, n, _ = x.shape
|
||||
|
||||
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
|
||||
x = cat((cls_tokens, x), dim=1)
|
||||
x += self.pos_embedding[:, :(n + 1)]
|
||||
x += self.pos_embedding[:n]
|
||||
|
||||
cls_tokens = repeat(self.cls_token, 'd -> b d', b = b)
|
||||
register_tokens = repeat(self.register_tokens, 'n d -> b n d', b = b)
|
||||
|
||||
x, packed_shape = pack((register_tokens, cls_tokens, x), 'b * d')
|
||||
|
||||
x = self.dropout(x)
|
||||
|
||||
x, hiddens = self.transformer(x, return_hiddens = True)
|
||||
@@ -227,7 +234,9 @@ class ViT(Module):
|
||||
if return_hiddens:
|
||||
return x, stack(hiddens)
|
||||
|
||||
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
|
||||
cls_tokens, x, register_tokens = unpack(x, packed_shape, 'b * d')
|
||||
|
||||
x = x.mean(dim = 1) if self.pool == 'mean' else cls_tokens
|
||||
|
||||
x = self.to_latent(x)
|
||||
return self.mlp_head(x)
|
||||
@@ -251,6 +260,7 @@ class VAT(Module):
|
||||
num_views = None,
|
||||
num_tasks = None,
|
||||
dim_extra_token = None,
|
||||
num_register_tokens = 4,
|
||||
action_chunk_len = 7,
|
||||
time_seq_len = 1,
|
||||
dropout = 0.,
|
||||
@@ -295,6 +305,10 @@ class VAT(Module):
|
||||
if self.has_tasks:
|
||||
self.task_emb = nn.Parameter(torch.randn(num_tasks, dim) * 1e-2)
|
||||
|
||||
# register tokens from Darcet et al.
|
||||
|
||||
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim) * 1e-2)
|
||||
|
||||
# to action tokens
|
||||
|
||||
self.action_pos_emb = nn.Parameter(torch.randn(action_chunk_len, dim) * 1e-2)
|
||||
@@ -407,6 +421,12 @@ class VAT(Module):
|
||||
|
||||
action_tokens, packed_extra = pack([action_tokens, extra_token], 'b * d')
|
||||
|
||||
# register tokens
|
||||
|
||||
register_tokens = repeat(self.register_tokens, 'n d -> b n d', b = batch)
|
||||
|
||||
action_tokens, registers_packed_shape = pack((register_tokens, action_tokens), 'b * d')
|
||||
|
||||
# cross attention
|
||||
|
||||
hiddens = [action_tokens]
|
||||
@@ -425,6 +445,10 @@ class VAT(Module):
|
||||
|
||||
hiddens.append(action_tokens)
|
||||
|
||||
# unpack registers
|
||||
|
||||
_, action_tokens = unpack(action_tokens, registers_packed_shape, 'b * d')
|
||||
|
||||
# maybe unpack extra
|
||||
|
||||
if has_extra:
|
||||
|
||||
Reference in New Issue
Block a user