mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
document
This commit is contained in:
33
README.md
33
README.md
@@ -25,6 +25,7 @@
|
||||
- [MaxViT](#maxvit)
|
||||
- [NesT](#nest)
|
||||
- [MobileViT](#mobilevit)
|
||||
- [XCiT](#xcit)
|
||||
- [Masked Autoencoder](#masked-autoencoder)
|
||||
- [Simple Masked Image Modeling](#simple-masked-image-modeling)
|
||||
- [Masked Patch Prediction](#masked-patch-prediction)
|
||||
@@ -772,6 +773,38 @@ img = torch.randn(1, 3, 256, 256)
|
||||
pred = mbvit_xs(img) # (1, 1000)
|
||||
```
|
||||
|
||||
## XCiT
|
||||
|
||||
<img src="./images/xcit.png" width="400px"></img>
|
||||
|
||||
This <a href="https://arxiv.org/abs/2106.09681">paper</a> introduces the cross correlation attention (abbreviated XCA). One can think of it as doing attention across the features dimension rather than the spatial one (another perspective would be a dynamic 1x1 convolution, the kernel being attention map defined by spatial correlations).
|
||||
|
||||
Technically, this amounts to simply transposing the query, key, values before executing cosine similarity attention with learned temperature.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from vit_pytorch.xcit import XCiT
|
||||
|
||||
v = XCiT(
|
||||
image_size = 256,
|
||||
patch_size = 32,
|
||||
num_classes = 1000,
|
||||
dim = 1024,
|
||||
depth = 12, # depth of xcit transformer
|
||||
cls_depth = 2, # depth of cross attention of CLS tokens to patch, attention pool at end
|
||||
heads = 16,
|
||||
mlp_dim = 2048,
|
||||
dropout = 0.1,
|
||||
emb_dropout = 0.1,
|
||||
layer_dropout = 0.05, # randomly dropout 5% of the layers
|
||||
local_patch_kernel_size = 3 # kernel size of the local patch interaction module (depthwise convs)
|
||||
)
|
||||
|
||||
img = torch.randn(1, 3, 256, 256)
|
||||
|
||||
preds = v(img) # (1, 1000)
|
||||
```
|
||||
|
||||
## Simple Masked Image Modeling
|
||||
|
||||
<img src="./images/simmim.png" width="400px"/>
|
||||
|
||||
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '1.5.3',
|
||||
version = '1.6.0',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
long_description_content_type = 'text/markdown',
|
||||
|
||||
Reference in New Issue
Block a user