Commit Graph

200 Commits

Author SHA1 Message Date
lucidrains
9f49a31977 1.9.2 2025-01-19 05:53:11 -08:00
Phil Wang
c3018d1433 1.9.1 2025-01-04 07:55:49 -08:00
lucidrains
e7cba9ba6d add a simple vit flavor for a new bytedance paper that proposes to break out of the traditional one residual stream architecture - "hyper-connections" 2024-12-20 17:43:50 -08:00
lucidrains
56373c0cbd make value residual learned 2024-11-24 08:21:28 -08:00
lucidrains
24196a3e8a allow for qk norm to be turned off for na vit nested tensor 2024-11-20 10:59:22 -08:00
Phil Wang
141239ca86 fix value residual 2024-10-31 06:48:24 -07:00
lucidrains
0b5c9b4559 add value residual based simple vit 2024-10-28 09:19:00 -07:00
lucidrains
e300cdd7dc fix multiheaded qk rmsnorm in nViT 2024-10-10 19:15:17 -07:00
Phil Wang
36ddc7a6ba go all the way with the normalized vit, fix some scales 2024-10-10 10:42:37 -07:00
Phil Wang
74b62009f8 go for multi-headed rmsnorm for the qknorm on hypersphere vit 2024-10-10 08:09:58 -07:00
Phil Wang
f50d7d1436 add a hypersphere vit, adapted from https://arxiv.org/abs/2410.01131 2024-10-09 07:32:25 -07:00
lucidrains
82f2fa751d address https://github.com/lucidrains/vit-pytorch/issues/330 2024-10-04 07:01:48 -07:00
lucidrains
fcb9501cdd add register tokens to the nested tensor 3d na vit example for researcher 2024-08-28 12:21:31 -07:00
lucidrains
c4651a35a3 1.7.11 2024-08-21 19:24:13 -07:00
Phil Wang
5e808f48d1 3d version of navit nested tensor 2024-08-21 07:23:21 -07:00
Phil Wang
bed48b5912 fix tests
fix tests
2024-08-20 15:35:04 -07:00
lucidrains
73199ab486 Nested navit (#325)
add a variant of NaViT using nested tensors
2024-08-20 15:12:29 -07:00
Phil Wang
4f22eae631 1.7.5 2024-08-07 08:46:18 -07:00
lucidrains
9992a615d1 attention re-use in lookup vit should use pre-softmax attention matrix 2024-07-19 19:23:38 -07:00
Phil Wang
4b2c00cb63 when cross attending in look vit, make sure context tokens are normalized 2024-07-19 10:23:12 -07:00
Phil Wang
ec6c48b8ff norm not needed when reusing attention in lookvit 2024-07-19 10:00:03 -07:00
Phil Wang
547bf94d07 1.7.1 2024-07-19 09:49:44 -07:00
lucidrains
e3256d77cd fix t2t vit having two layernorms, and make final layernorm in distillation wrapper configurable, default to False for vit 2024-06-11 15:12:53 -07:00
lucidrains
90be7233a3 rotary needs to be done with full precision to be safe 2024-05-11 08:04:32 -07:00
Phil Wang
bca88e9039 address https://github.com/lucidrains/vit-pytorch/issues/300 2024-05-02 08:46:39 -07:00
Phil Wang
96f66d2754 address https://github.com/lucidrains/vit-pytorch/issues/306 2024-04-18 09:44:29 -07:00
Phil Wang
12249dcc5f address https://github.com/lucidrains/vit-pytorch/issues/304 2024-04-17 09:40:03 -07:00
SOUMYADIP MAL
8b8da8dede Update setup.py (#303) 2024-04-17 08:21:30 -07:00
lucidrains
5578ac472f address https://github.com/lucidrains/vit-pytorch/issues/292 2023-12-23 08:11:39 -08:00
lucidrains
d446a41243 share an idea that should be tried if it has not been 2023-11-14 16:55:36 -08:00
lucidrains
0ad09c4cbc allow channels to be customizable for cvt 2023-10-25 14:47:58 -07:00
Phil Wang
92b69321f4 1.6.2 2023-10-24 12:47:38 -07:00
lucidrains
53fe345e85 no longer needed with einops 0.7 2023-10-19 18:16:46 -07:00
Phil Wang
1616288e30 add xcit (#284)
* add xcit

* use Rearrange layers

* give cross correlation transformer a final norm at end

* document
2023-10-13 09:15:13 -07:00
lucidrains
bbb24e34d4 give a learned bias to and from registers for maxvit + register token variant 2023-10-06 10:40:26 -07:00
lucidrains
df8733d86e improvise a max vit with register tokens 2023-10-06 10:27:36 -07:00
lucidrains
3fdb8dd352 fix pypi 2023-10-01 08:14:20 -07:00
lucidrains
a36546df23 add simple vit with register tokens example, cite 2023-10-01 08:11:40 -07:00
lucidrains
d830b05f06 address https://github.com/lucidrains/vit-pytorch/issues/279 2023-09-10 09:32:57 -07:00
Phil Wang
8208c859a5 just remove PreNorm wrapper from all ViTs, as it is unlikely to change at this point 2023-08-14 09:48:55 -07:00
Phil Wang
4264efd906 1.4.2 2023-08-14 07:59:35 -07:00
lucidrains
950c901b80 fix linear head in simple vit, thanks to @atkos 2023-08-10 14:36:21 -07:00
Phil Wang
3e5d1be6f0 address https://github.com/lucidrains/vit-pytorch/pull/274 2023-08-09 07:53:38 -07:00
Phil Wang
6e2393de95 wrap up NaViT 2023-07-25 10:38:55 -07:00
Phil Wang
32974c33df one can pass a callback to token_dropout_prob for NaViT that takes in height and width and calculate appropriate dropout rate 2023-07-24 14:52:40 -07:00
Phil Wang
17675e0de4 add constant token dropout for NaViT 2023-07-24 14:14:36 -07:00
Phil Wang
598cffab53 release NaViT 2023-07-24 13:55:54 -07:00
Phil Wang
e9ca1f4d57 1.2.5 2023-07-24 06:43:24 -07:00
Phil Wang
9e3fec2398 fix mpp 2023-06-28 08:02:43 -07:00
Phil Wang
ce4bcd08fb address https://github.com/lucidrains/vit-pytorch/issues/266 2023-05-20 08:24:49 -07:00