mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
da950e6d2c | ||
|
|
4b9a02d89c | ||
|
|
518924eac5 | ||
|
|
e712003dfb | ||
|
|
d04ce06a30 |
22
README.md
22
README.md
@@ -432,6 +432,28 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{chen2021crossvit,
|
||||
title = {CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification},
|
||||
author = {Chun-Fu Chen and Quanfu Fan and Rameswar Panda},
|
||||
year = {2021},
|
||||
eprint = {2103.14899},
|
||||
archivePrefix = {arXiv},
|
||||
primaryClass = {cs.CV}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{wu2021cvt,
|
||||
title = {CvT: Introducing Convolutions to Vision Transformers},
|
||||
author = {Haiping Wu and Bin Xiao and Noel Codella and Mengchen Liu and Xiyang Dai and Lu Yuan and Lei Zhang},
|
||||
year = {2021},
|
||||
eprint = {2103.15808},
|
||||
archivePrefix = {arXiv},
|
||||
primaryClass = {cs.CV}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{vaswani2017attention,
|
||||
title = {Attention Is All You Need},
|
||||
|
||||
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '0.10.1',
|
||||
version = '0.12.0',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
author = 'Phil Wang',
|
||||
|
||||
270
vit_pytorch/cross_vit.py
Normal file
270
vit_pytorch/cross_vit.py
Normal file
@@ -0,0 +1,270 @@
|
||||
import torch
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
# pre-layernorm
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
# feedforward
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# attention
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
||||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, context = None, kv_include_self = False):
|
||||
b, n, _, h = *x.shape, self.heads
|
||||
context = default(context, x)
|
||||
|
||||
if kv_include_self:
|
||||
context = torch.cat((x, context), dim = 1) # cross attention requires CLS token includes itself as key / value
|
||||
|
||||
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
|
||||
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
# transformer encoder, for small and large patches
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
|
||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
||||
]))
|
||||
|
||||
def forward(self, x):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
return self.norm(x)
|
||||
|
||||
# projecting CLS tokens, in the case that small and large patch tokens have different dimensions
|
||||
|
||||
class ProjectInOut(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, fn):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
|
||||
need_projection = dim_in != dim_out
|
||||
self.project_in = nn.Linear(dim_in, dim_out) if need_projection else nn.Identity()
|
||||
self.project_out = nn.Linear(dim_out, dim_in) if need_projection else nn.Identity()
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
x = self.project_in(x)
|
||||
x = self.fn(x, *args, **kwargs)
|
||||
x = self.project_out(x)
|
||||
return x
|
||||
|
||||
# cross attention transformer
|
||||
|
||||
class CrossTransformer(nn.Module):
|
||||
def __init__(self, sm_dim, lg_dim, depth, heads, dim_head, dropout):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
ProjectInOut(sm_dim, lg_dim, PreNorm(lg_dim, Attention(lg_dim, heads = heads, dim_head = dim_head, dropout = dropout))),
|
||||
ProjectInOut(lg_dim, sm_dim, PreNorm(sm_dim, Attention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout)))
|
||||
]))
|
||||
|
||||
def forward(self, sm_tokens, lg_tokens):
|
||||
(sm_cls, sm_patch_tokens), (lg_cls, lg_patch_tokens) = map(lambda t: (t[:, :1], t[:, 1:]), (sm_tokens, lg_tokens))
|
||||
|
||||
for sm_attend_lg, lg_attend_sm in self.layers:
|
||||
sm_cls = sm_attend_lg(sm_cls, context = lg_patch_tokens, kv_include_self = True) + sm_cls
|
||||
lg_cls = lg_attend_sm(lg_cls, context = sm_patch_tokens, kv_include_self = True) + lg_cls
|
||||
|
||||
sm_tokens = torch.cat((sm_cls, sm_patch_tokens), dim = 1)
|
||||
lg_tokens = torch.cat((lg_cls, lg_patch_tokens), dim = 1)
|
||||
return sm_tokens, lg_tokens
|
||||
|
||||
# multi-scale encoder
|
||||
|
||||
class MultiScaleEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
depth,
|
||||
sm_dim,
|
||||
lg_dim,
|
||||
sm_enc_params,
|
||||
lg_enc_params,
|
||||
cross_attn_heads,
|
||||
cross_attn_depth,
|
||||
cross_attn_dim_head = 64,
|
||||
dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
Transformer(dim = sm_dim, dropout = dropout, **sm_enc_params),
|
||||
Transformer(dim = lg_dim, dropout = dropout, **lg_enc_params),
|
||||
CrossTransformer(sm_dim = sm_dim, lg_dim = lg_dim, depth = cross_attn_depth, heads = cross_attn_heads, dim_head = cross_attn_dim_head, dropout = dropout)
|
||||
]))
|
||||
|
||||
def forward(self, sm_tokens, lg_tokens):
|
||||
for sm_enc, lg_enc, cross_attend in self.layers:
|
||||
sm_tokens, lg_tokens = sm_enc(sm_tokens), lg_enc(lg_tokens)
|
||||
sm_tokens, lg_tokens = cross_attend(sm_tokens, lg_tokens)
|
||||
|
||||
return sm_tokens, lg_tokens
|
||||
|
||||
# patch-based image to token embedder
|
||||
|
||||
class ImageEmbedder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
image_size,
|
||||
patch_size,
|
||||
dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
patch_dim = 3 * patch_size ** 2
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
||||
nn.Linear(patch_dim, dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, img):
|
||||
x = self.to_patch_embedding(img)
|
||||
b, n, _ = x.shape
|
||||
|
||||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
x += self.pos_embedding[:, :(n + 1)]
|
||||
|
||||
return self.dropout(x)
|
||||
|
||||
# cross ViT class
|
||||
|
||||
class CrossViT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
image_size,
|
||||
num_classes,
|
||||
sm_dim,
|
||||
lg_dim,
|
||||
sm_patch_size = 12,
|
||||
sm_enc_depth = 1,
|
||||
sm_enc_heads = 8,
|
||||
sm_enc_mlp_dim = 2048,
|
||||
sm_enc_dim_head = 64,
|
||||
lg_patch_size = 16,
|
||||
lg_enc_depth = 4,
|
||||
lg_enc_heads = 8,
|
||||
lg_enc_mlp_dim = 2048,
|
||||
lg_enc_dim_head = 64,
|
||||
cross_attn_depth = 2,
|
||||
cross_attn_heads = 8,
|
||||
cross_attn_dim_head = 64,
|
||||
depth = 3,
|
||||
dropout = 0.1,
|
||||
emb_dropout = 0.1
|
||||
):
|
||||
super().__init__()
|
||||
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout)
|
||||
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout)
|
||||
|
||||
self.multi_scale_encoder = MultiScaleEncoder(
|
||||
depth = depth,
|
||||
sm_dim = sm_dim,
|
||||
lg_dim = lg_dim,
|
||||
cross_attn_heads = cross_attn_heads,
|
||||
cross_attn_dim_head = cross_attn_dim_head,
|
||||
cross_attn_depth = cross_attn_depth,
|
||||
sm_enc_params = dict(
|
||||
depth = sm_enc_depth,
|
||||
heads = sm_enc_heads,
|
||||
mlp_dim = sm_enc_mlp_dim,
|
||||
dim_head = sm_enc_dim_head
|
||||
),
|
||||
lg_enc_params = dict(
|
||||
depth = lg_enc_depth,
|
||||
heads = lg_enc_heads,
|
||||
mlp_dim = lg_enc_mlp_dim,
|
||||
dim_head = lg_enc_dim_head
|
||||
),
|
||||
dropout = dropout
|
||||
)
|
||||
|
||||
self.sm_mlp_head = nn.Sequential(nn.LayerNorm(sm_dim), nn.Linear(sm_dim, num_classes))
|
||||
self.lg_mlp_head = nn.Sequential(nn.LayerNorm(lg_dim), nn.Linear(lg_dim, num_classes))
|
||||
|
||||
def forward(self, img):
|
||||
sm_tokens = self.sm_image_embedder(img)
|
||||
lg_tokens = self.lg_image_embedder(img)
|
||||
|
||||
sm_tokens, lg_tokens = self.multi_scale_encoder(sm_tokens, lg_tokens)
|
||||
|
||||
sm_cls, lg_cls = map(lambda t: t[:, 0], (sm_tokens, lg_tokens))
|
||||
|
||||
sm_logits = self.sm_mlp_head(sm_cls)
|
||||
lg_logits = self.lg_mlp_head(lg_cls)
|
||||
|
||||
return sm_logits + lg_logits
|
||||
162
vit_pytorch/cvt.py
Normal file
162
vit_pytorch/cvt.py
Normal file
@@ -0,0 +1,162 @@
|
||||
import torch
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helper methods
|
||||
|
||||
def group_dict_by_key(cond, d):
|
||||
return_val = [dict(), dict()]
|
||||
for key in d.keys():
|
||||
match = bool(cond(key))
|
||||
ind = int(not match)
|
||||
return_val[ind][key] = d[key]
|
||||
return (*return_val,)
|
||||
|
||||
def group_by_key_prefix_and_remove_prefix(prefix, d):
|
||||
kwargs_with_prefix, kwargs = group_dict_by_key(lambda x: x.startswith(prefix), d)
|
||||
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
||||
return kwargs_without_prefix, kwargs
|
||||
|
||||
# classes
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
x = rearrange(x, 'b c h w -> b h w c')
|
||||
x = self.norm(x)
|
||||
x = rearrange(x, 'b h w c -> b c h w')
|
||||
return self.fn(x, **kwargs)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, mult = 4, dropout = 0.):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(dim, dim * mult, 1),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Conv2d(dim * mult, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class DepthWiseConv2d(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
|
||||
nn.BatchNorm2d(dim_in),
|
||||
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, proj_kernel, kv_proj_stride, heads = 8, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
padding = proj_kernel // 2
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
|
||||
self.to_q = DepthWiseConv2d(dim, inner_dim, 3, padding = padding, stride = 1, bias = False)
|
||||
self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, 3, padding = padding, stride = kv_proj_stride, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Conv2d(inner_dim, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
shape = x.shape
|
||||
b, n, _, y, h = *shape, self.heads
|
||||
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = 1))
|
||||
q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> (b h) (x y) d', h = h), (q, k, v))
|
||||
|
||||
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, proj_kernel, kv_proj_stride, depth, heads, dim_head = 64, mlp_mult = 4, dropout = 0.):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, Attention(dim, proj_kernel = proj_kernel, kv_proj_stride = kv_proj_stride, heads = heads, dim_head = dim_head, dropout = dropout)),
|
||||
PreNorm(dim, FeedForward(dim, mlp_mult, dropout = dropout))
|
||||
]))
|
||||
def forward(self, x):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
return x
|
||||
|
||||
class CvT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_classes,
|
||||
s1_emb_dim = 64,
|
||||
s1_emb_kernel = 7,
|
||||
s1_emb_stride = 4,
|
||||
s1_proj_kernel = 3,
|
||||
s1_kv_proj_stride = 2,
|
||||
s1_heads = 1,
|
||||
s1_depth = 1,
|
||||
s1_mlp_mult = 4,
|
||||
s2_emb_dim = 192,
|
||||
s2_emb_kernel = 3,
|
||||
s2_emb_stride = 2,
|
||||
s2_proj_kernel = 3,
|
||||
s2_kv_proj_stride = 2,
|
||||
s2_heads = 3,
|
||||
s2_depth = 2,
|
||||
s2_mlp_mult = 4,
|
||||
s3_emb_dim = 384,
|
||||
s3_emb_kernel = 3,
|
||||
s3_emb_stride = 2,
|
||||
s3_proj_kernel = 3,
|
||||
s3_kv_proj_stride = 2,
|
||||
s3_heads = 4,
|
||||
s3_depth = 10,
|
||||
s3_mlp_mult = 4,
|
||||
dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
kwargs = dict(locals())
|
||||
|
||||
dim = 3
|
||||
layers = []
|
||||
|
||||
for prefix in ('s1', 's2', 's3'):
|
||||
config, kwargs = group_by_key_prefix_and_remove_prefix(f'{prefix}_', kwargs)
|
||||
|
||||
layers.append(nn.Sequential(
|
||||
nn.Conv2d(dim, config['emb_dim'], kernel_size = config['emb_kernel'], padding = (config['emb_kernel'] // 2), stride = config['emb_stride']),
|
||||
Transformer(dim = config['emb_dim'], proj_kernel = config['proj_kernel'], kv_proj_stride = config['kv_proj_stride'], depth = config['depth'], heads = config['heads'], mlp_mult = config['mlp_mult'], dropout = dropout)
|
||||
))
|
||||
|
||||
dim = config['emb_dim']
|
||||
|
||||
self.layers = nn.Sequential(
|
||||
*layers,
|
||||
nn.AdaptiveAvgPool2d(1),
|
||||
Rearrange('... () () -> ...'),
|
||||
nn.Linear(dim, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
180
vit_pytorch/pit.py
Normal file
180
vit_pytorch/pit.py
Normal file
@@ -0,0 +1,180 @@
|
||||
from math import sqrt
|
||||
|
||||
import torch
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def cast_tuple(val, num):
|
||||
return val if isinstance(val, tuple) else (val,) * num
|
||||
|
||||
def conv_output_size(image_size, kernel_size, stride, padding = 0):
|
||||
return int(((image_size - kernel_size + (2 * padding)) / stride) + 1)
|
||||
|
||||
# classes
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
project_out = not (heads == 1 and dim_head == dim)
|
||||
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
) if project_out else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
b, n, _, h = *x.shape, self.heads
|
||||
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
|
||||
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
|
||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
||||
]))
|
||||
def forward(self, x):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
return x
|
||||
|
||||
# depthwise convolution, for pooling
|
||||
|
||||
class DepthWiseConv2d(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
|
||||
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# pooling layer
|
||||
|
||||
class Pool(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.downsample = DepthWiseConv2d(dim, dim * 2, kernel_size = 3, stride = 2, padding = 1)
|
||||
self.cls_ff = nn.Linear(dim, dim * 2)
|
||||
|
||||
def forward(self, x):
|
||||
cls_token, tokens = x[:, :1], x[:, 1:]
|
||||
|
||||
cls_token = self.cls_ff(cls_token)
|
||||
|
||||
tokens = rearrange(tokens, 'b (h w) c -> b c h w', h = int(sqrt(tokens.shape[1])))
|
||||
tokens = self.downsample(tokens)
|
||||
tokens = rearrange(tokens, 'b c h w -> b (h w) c')
|
||||
|
||||
return torch.cat((cls_token, tokens), dim = 1)
|
||||
|
||||
# main class
|
||||
|
||||
class PiT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
image_size,
|
||||
patch_size,
|
||||
num_classes,
|
||||
dim,
|
||||
depth,
|
||||
heads,
|
||||
mlp_dim,
|
||||
dim_head = 64,
|
||||
dropout = 0.,
|
||||
emb_dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing'
|
||||
heads = cast_tuple(heads, len(depth))
|
||||
|
||||
patch_dim = 3 * patch_size ** 2
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
nn.Unfold(kernel_size = patch_size, stride = patch_size // 2),
|
||||
Rearrange('b c n -> b n c'),
|
||||
nn.Linear(patch_dim, dim)
|
||||
)
|
||||
|
||||
output_size = conv_output_size(image_size, patch_size, patch_size // 2)
|
||||
num_patches = output_size ** 2
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
layers = []
|
||||
|
||||
for ind, (layer_depth, layer_heads) in enumerate(zip(depth, heads)):
|
||||
not_last = ind < (len(depth) - 1)
|
||||
|
||||
layers.append(Transformer(dim, layer_depth, layer_heads, dim_head, mlp_dim, dropout))
|
||||
|
||||
if not_last:
|
||||
layers.append(Pool(dim))
|
||||
dim *= 2
|
||||
|
||||
self.layers = nn.Sequential(
|
||||
*layers,
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, img):
|
||||
x = self.to_patch_embedding(img)
|
||||
b, n, _ = x.shape
|
||||
|
||||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
x += self.pos_embedding
|
||||
x = self.dropout(x)
|
||||
|
||||
return self.layers(x)
|
||||
@@ -4,9 +4,6 @@ from torch import nn
|
||||
|
||||
from vit_pytorch.vit import Attention
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def find_modules(nn_module, type):
|
||||
return [module for module in nn_module.modules() if isinstance(module, type)]
|
||||
|
||||
@@ -25,7 +22,7 @@ class Recorder(nn.Module):
|
||||
self.recordings.append(output.clone().detach())
|
||||
|
||||
def _register_hook(self):
|
||||
modules = find_modules(self, Attention)
|
||||
modules = find_modules(self.vit.transformer, Attention)
|
||||
for module in modules:
|
||||
handle = module.attend.register_forward_hook(self._hook)
|
||||
self.hooks.append(handle)
|
||||
|
||||
Reference in New Issue
Block a user