Compare commits

...

2 Commits

Author SHA1 Message Date
Phil Wang
da950e6d2c add working PiT 2021-03-30 22:15:19 -07:00
Phil Wang
4b9a02d89c use depthwise conv for CvT projections 2021-03-30 18:18:35 -07:00
3 changed files with 194 additions and 3 deletions

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.11.0',
version = '0.12.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',

View File

@@ -46,6 +46,17 @@ class FeedForward(nn.Module):
def forward(self, x):
return self.net(x)
class DepthWiseConv2d(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
nn.BatchNorm2d(dim_in),
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, proj_kernel, kv_proj_stride, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
@@ -56,8 +67,8 @@ class Attention(nn.Module):
self.attend = nn.Softmax(dim = -1)
self.to_q = nn.Conv2d(dim, inner_dim, 3, padding = padding, stride = 1, bias = False)
self.to_kv = nn.Conv2d(dim, inner_dim * 2, 3, padding = padding, stride = kv_proj_stride, bias = False)
self.to_q = DepthWiseConv2d(dim, inner_dim, 3, padding = padding, stride = 1, bias = False)
self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, 3, padding = padding, stride = kv_proj_stride, bias = False)
self.to_out = nn.Sequential(
nn.Conv2d(inner_dim, dim, 1),

180
vit_pytorch/pit.py Normal file
View File

@@ -0,0 +1,180 @@
from math import sqrt
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def cast_tuple(val, num):
return val if isinstance(val, tuple) else (val,) * num
def conv_output_size(image_size, kernel_size, stride, padding = 0):
return int(((image_size - kernel_size + (2 * padding)) / stride) + 1)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
# depthwise convolution, for pooling
class DepthWiseConv2d(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
)
def forward(self, x):
return self.net(x)
# pooling layer
class Pool(nn.Module):
def __init__(self, dim):
super().__init__()
self.downsample = DepthWiseConv2d(dim, dim * 2, kernel_size = 3, stride = 2, padding = 1)
self.cls_ff = nn.Linear(dim, dim * 2)
def forward(self, x):
cls_token, tokens = x[:, :1], x[:, 1:]
cls_token = self.cls_ff(cls_token)
tokens = rearrange(tokens, 'b (h w) c -> b c h w', h = int(sqrt(tokens.shape[1])))
tokens = self.downsample(tokens)
tokens = rearrange(tokens, 'b c h w -> b (h w) c')
return torch.cat((cls_token, tokens), dim = 1)
# main class
class PiT(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing'
heads = cast_tuple(heads, len(depth))
patch_dim = 3 * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
nn.Unfold(kernel_size = patch_size, stride = patch_size // 2),
Rearrange('b c n -> b n c'),
nn.Linear(patch_dim, dim)
)
output_size = conv_output_size(image_size, patch_size, patch_size // 2)
num_patches = output_size ** 2
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
layers = []
for ind, (layer_depth, layer_heads) in enumerate(zip(depth, heads)):
not_last = ind < (len(depth) - 1)
layers.append(Transformer(dim, layer_depth, layer_heads, dim_head, mlp_dim, dropout))
if not_last:
layers.append(Pool(dim))
dim *= 2
self.layers = nn.Sequential(
*layers,
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.dropout(x)
return self.layers(x)