Compare commits

...

9 Commits

Author SHA1 Message Date
Phil Wang
da6699bb41 offer hard distillation as well 2021-04-01 16:41:46 -07:00
Phil Wang
deb96201d5 readme 2021-03-31 23:02:47 -07:00
Phil Wang
05b47cc070 make sure layerscale epsilon is a function of depth 2021-03-31 22:53:04 -07:00
Phil Wang
9ef8da4759 add CaiT, new vision transformer out of facebook AI, complete with layerscale, talking heads, and cls -> patch cross attention 2021-03-31 22:42:16 -07:00
Phil Wang
506fcf83a6 add documentation for three recent vision transformer follow-up papers 2021-03-31 09:22:15 -07:00
Phil Wang
6fb360a1ff add arxiv links for now, document in readme later 2021-03-30 22:26:44 -07:00
Phil Wang
9332b9e8c9 cite 2021-03-30 22:16:14 -07:00
Phil Wang
da950e6d2c add working PiT 2021-03-30 22:15:19 -07:00
Phil Wang
4b9a02d89c use depthwise conv for CvT projections 2021-03-30 18:18:35 -07:00
10 changed files with 525 additions and 11 deletions

166
README.md
View File

@@ -93,7 +93,8 @@ distiller = DistillWrapper(
student = v,
teacher = teacher,
temperature = 3, # temperature of distillation
alpha = 0.5 # trade between main loss and distillation loss
alpha = 0.5, # trade between main loss and distillation loss
hard = False # whether to use soft or hard distillation
)
img = torch.randn(2, 3, 256, 256)
@@ -143,6 +144,36 @@ img = torch.randn(1, 3, 256, 256)
preds = v(img) # (1, 1000)
```
## CaiT
<a href="https://arxiv.org/abs/2103.17239">This paper</a> also notes difficulty in training vision transformers at greater depths and proposes two solutions. First it proposes to do per-channel multiplication of the output of the residual block. Second, it proposes to have the patches attend to one another, and only allow the CLS token to attend to the patches in the last few layers.
They also add <a href="https://github.com/lucidrains/x-transformers#talking-heads-attention">Talking Heads</a>, noting improvements
You can use this scheme as follows
```python
import torch
from vit_pytorch.cait import CaiT
v = CaiT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 12, # depth of transformer for patch to patch attention only
cls_depth = 2, # depth of cross attention of CLS tokens to patch
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)
preds = v(img) # (1, 1000)
```
## Token-to-Token ViT
<img src="./images/t2t.png" width="400px"></img>
@@ -164,7 +195,116 @@ v = T2TViT(
)
img = torch.randn(1, 3, 224, 224)
v(img) # (1, 1000)
preds = v(img) # (1, 1000)
```
## Cross ViT
<img src="./images/cross_vit.png" width="400px"></img>
<a href="https://arxiv.org/abs/2103.14899">This paper</a> proposes to have two vision transformers processing the image at different scales, cross attending to one every so often. They show improvements on top of the base vision transformer.
```python
import torch
from vit_pytorch.cross_vit import CrossViT
v = CrossViT(
image_size = 256,
num_classes = 1000,
depth = 4, # number of multi-scale encoding blocks
sm_dim = 192, # high res dimension
sm_patch_size = 16, # high res patch size (should be smaller than lg_patch_size)
sm_enc_depth = 2, # high res depth
sm_enc_heads = 8, # high res heads
sm_enc_mlp_dim = 2048, # high res feedforward dimension
lg_dim = 384, # low res dimension
lg_patch_size = 64, # low res patch size
lg_enc_depth = 3, # low res depth
lg_enc_heads = 8, # low res heads
lg_enc_mlp_dim = 2048, # low res feedforward dimensions
cross_attn_depth = 2, # cross attention rounds
cross_attn_heads = 8, # cross attention heads
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)
pred = v(img) # (1, 1000)
```
## PiT
<img src="./images/pit.png" width="400px"></img>
<a href="https://arxiv.org/abs/2103.16302">This paper</a> proposes to downsample the tokens through a pooling procedure using depth-wise convolutions.
```python
import torch
from vit_pytorch.pit import PiT
v = PiT(
image_size = 224,
patch_size = 14,
dim = 256,
num_classes = 1000,
depth = (3, 3, 3), # list of depths, indicating the number of rounds of each stage before a downsample
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
# forward pass now returns predictions and the attention maps
img = torch.randn(1, 3, 224, 224)
preds = v(img) # (1, 1000)
```
## CvT
<img src="./images/cvt.png" width="400px"></img>
<a href="https://arxiv.org/abs/2103.15808">This paper</a> proposes mixing convolutions and attention. Specifically, convolutions are used to embed and downsample the image / feature map in three stages. Depthwise-convoltion is also used to project the queries, keys, and values for attention.
```python
import torch
from vit_pytorch.cvt import CvT
v = CvT(
num_classes = 1000,
s1_emb_dim = 64, # stage 1 - dimension
s1_emb_kernel = 7, # stage 1 - conv kernel
s1_emb_stride = 4, # stage 1 - conv stride
s1_proj_kernel = 3, # stage 1 - attention ds-conv kernel size
s1_kv_proj_stride = 2, # stage 1 - attention key / value projection stride
s1_heads = 1, # stage 1 - heads
s1_depth = 1, # stage 1 - depth
s1_mlp_mult = 4, # stage 1 - feedforward expansion factor
s2_emb_dim = 192, # stage 2 - (same as above)
s2_emb_kernel = 3,
s2_emb_stride = 2,
s2_proj_kernel = 3,
s2_kv_proj_stride = 2,
s2_heads = 3,
s2_depth = 2,
s2_mlp_mult = 4,
s3_emb_dim = 384, # stage 3 - (same as above)
s3_emb_kernel = 3,
s3_emb_stride = 2,
s3_proj_kernel = 3,
s3_kv_proj_stride = 2,
s3_heads = 4,
s3_depth = 10,
s3_mlp_mult = 4,
dropout = 0.
)
img = torch.randn(1, 3, 224, 224)
pred = v(img) # (1, 1000)
```
## Masked Patch Prediction
@@ -432,6 +572,17 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@misc{touvron2021going,
title = {Going deeper with Image Transformers},
author = {Hugo Touvron and Matthieu Cord and Alexandre Sablayrolles and Gabriel Synnaeve and Hervé Jégou},
year = {2021},
eprint = {2103.17239},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{chen2021crossvit,
title = {CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification},
@@ -454,6 +605,17 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@misc{heo2021rethinking,
title = {Rethinking Spatial Dimensions of Vision Transformers},
author = {Byeongho Heo and Sangdoo Yun and Dongyoon Han and Sanghyuk Chun and Junsuk Choe and Seong Joon Oh},
year = {2021},
eprint = {2103.16302},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},

BIN
images/cait.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

BIN
images/cross_vit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

BIN
images/cvt.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

BIN
images/pit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.11.0',
version = '0.14.3',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',

155
vit_pytorch/cait.py Normal file
View File

@@ -0,0 +1,155 @@
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
# classes
class LayerScale(nn.Module):
def __init__(self, dim, fn, depth):
super().__init__()
if depth <= 18: # epsilon detailed in section 2 of paper
init_eps = 0.1
elif depth > 18 and depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
scale = torch.zeros(1, 1, dim).fill_(init_eps)
self.scale = nn.Parameter(scale)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.attend = nn.Softmax(dim = -1)
self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads))
self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads))
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, context = None):
b, n, _, h = *x.shape, self.heads
context = x if not exists(context) else torch.cat((x, context), dim = 1)
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn) # talking heads, pre-softmax
attn = self.attend(dots)
attn = einsum('b h i j, h g -> b g i j', attn, self.mix_heads_post_attn) # talking heads, post-softmax
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for ind in range(depth):
self.layers.append(nn.ModuleList([
LayerScale(dim, PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), depth = ind + 1),
LayerScale(dim, PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)), depth = ind + 1)
]))
def forward(self, x, context = None):
for attn, ff in self.layers:
x = attn(x, context = context) + x
x = ff(x) + x
return x
class CaiT(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
cls_depth,
heads,
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.patch_transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.cls_transformer = Transformer(dim, cls_depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
x += self.pos_embedding[:, :n]
x = self.dropout(x)
x = self.patch_transformer(x)
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = self.cls_transformer(cls_tokens, context = x)
return self.mlp_head(x[:, 0])

View File

@@ -46,6 +46,17 @@ class FeedForward(nn.Module):
def forward(self, x):
return self.net(x)
class DepthWiseConv2d(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
nn.BatchNorm2d(dim_in),
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, proj_kernel, kv_proj_stride, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
@@ -56,8 +67,8 @@ class Attention(nn.Module):
self.attend = nn.Softmax(dim = -1)
self.to_q = nn.Conv2d(dim, inner_dim, 3, padding = padding, stride = 1, bias = False)
self.to_kv = nn.Conv2d(dim, inner_dim * 2, 3, padding = padding, stride = kv_proj_stride, bias = False)
self.to_q = DepthWiseConv2d(dim, inner_dim, 3, padding = padding, stride = 1, bias = False)
self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, 3, padding = padding, stride = kv_proj_stride, bias = False)
self.to_out = nn.Sequential(
nn.Conv2d(inner_dim, dim, 1),

View File

@@ -104,7 +104,8 @@ class DistillWrapper(nn.Module):
teacher,
student,
temperature = 1.,
alpha = 0.5
alpha = 0.5,
hard = False
):
super().__init__()
assert (isinstance(student, (DistillableViT, DistillableT2TViT, DistillableEfficientViT))) , 'student must be a vision transformer'
@@ -116,6 +117,7 @@ class DistillWrapper(nn.Module):
num_classes = student.num_classes
self.temperature = temperature
self.alpha = alpha
self.hard = hard
self.distillation_token = nn.Parameter(torch.randn(1, 1, dim))
@@ -137,11 +139,15 @@ class DistillWrapper(nn.Module):
loss = F.cross_entropy(student_logits, labels)
distill_loss = F.kl_div(
F.log_softmax(distill_logits / T, dim = -1),
F.softmax(teacher_logits / T, dim = -1).detach(),
reduction = 'batchmean')
if not self.hard:
distill_loss = F.kl_div(
F.log_softmax(distill_logits / T, dim = -1),
F.softmax(teacher_logits / T, dim = -1).detach(),
reduction = 'batchmean')
else:
teacher_labels = teacher_logits.argmax(dim = -1)
distill_loss = F.cross_entropy(student_logits, teacher_labels)
distill_loss *= T ** 2
return loss * alpha + distill_loss * (1 - alpha)

180
vit_pytorch/pit.py Normal file
View File

@@ -0,0 +1,180 @@
from math import sqrt
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def cast_tuple(val, num):
return val if isinstance(val, tuple) else (val,) * num
def conv_output_size(image_size, kernel_size, stride, padding = 0):
return int(((image_size - kernel_size + (2 * padding)) / stride) + 1)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
# depthwise convolution, for pooling
class DepthWiseConv2d(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
)
def forward(self, x):
return self.net(x)
# pooling layer
class Pool(nn.Module):
def __init__(self, dim):
super().__init__()
self.downsample = DepthWiseConv2d(dim, dim * 2, kernel_size = 3, stride = 2, padding = 1)
self.cls_ff = nn.Linear(dim, dim * 2)
def forward(self, x):
cls_token, tokens = x[:, :1], x[:, 1:]
cls_token = self.cls_ff(cls_token)
tokens = rearrange(tokens, 'b (h w) c -> b c h w', h = int(sqrt(tokens.shape[1])))
tokens = self.downsample(tokens)
tokens = rearrange(tokens, 'b c h w -> b (h w) c')
return torch.cat((cls_token, tokens), dim = 1)
# main class
class PiT(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing'
heads = cast_tuple(heads, len(depth))
patch_dim = 3 * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
nn.Unfold(kernel_size = patch_size, stride = patch_size // 2),
Rearrange('b c n -> b n c'),
nn.Linear(patch_dim, dim)
)
output_size = conv_output_size(image_size, patch_size, patch_size // 2)
num_patches = output_size ** 2
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
layers = []
for ind, (layer_depth, layer_heads) in enumerate(zip(depth, heads)):
not_last = ind < (len(depth) - 1)
layers.append(Transformer(dim, layer_depth, layer_heads, dim_head, mlp_dim, dropout))
if not_last:
layers.append(Pool(dim))
dim *= 2
self.layers = nn.Sequential(
*layers,
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.dropout(x)
return self.layers(x)