mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6549522629 | ||
|
|
6a80a4ef89 | ||
|
|
9f05587a7d | ||
|
|
65bb350e85 | ||
|
|
fd4a7dfcf8 | ||
|
|
6f3a5fcf0b | ||
|
|
7807f24509 |
55
README.md
55
README.md
@@ -38,6 +38,7 @@ preds = v(img) # (1, 1000)
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
- `image_size`: int.
|
||||
Image size. If you have rectangular images, make sure your image size is the maximum of the width and height
|
||||
- `patch_size`: int.
|
||||
@@ -338,7 +339,7 @@ pred = v(img) # (1, 1000)
|
||||
|
||||
<img src="./images/twins_svt.png" width="400px"></img>
|
||||
|
||||
This <a href="https://arxiv.org/abs/2104.13840">paper</a> mixes local and global attention, along with position encoding generator (proposed in <a href="https://arxiv.org/abs/2102.10882">CPVT</a>) and global average pooling, to achieve the same results as <a href="https://arxiv.org/abs/2103.14030">Swin</a>, without the extra complexity of shifted windows, etc.
|
||||
This <a href="https://arxiv.org/abs/2104.13840">paper</a> proposes mixing local and global attention, along with position encoding generator (proposed in <a href="https://arxiv.org/abs/2102.10882">CPVT</a>) and global average pooling, to achieve the same results as <a href="https://arxiv.org/abs/2103.14030">Swin</a>, without the extra complexity of shifted windows, CLS tokens, nor positional embeddings.
|
||||
|
||||
```python
|
||||
import torch
|
||||
@@ -583,6 +584,58 @@ img = torch.randn(1, 3, 224, 224)
|
||||
v(img) # (1, 1000)
|
||||
```
|
||||
|
||||
## FAQ
|
||||
|
||||
- How do I pass in non-square images?
|
||||
|
||||
You can already pass in non-square images - you just have to make sure your height and width is less than or equal to the `image_size`, and both divisible by the `patch_size`
|
||||
|
||||
ex.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from vit_pytorch import ViT
|
||||
|
||||
v = ViT(
|
||||
image_size = 256,
|
||||
patch_size = 32,
|
||||
num_classes = 1000,
|
||||
dim = 1024,
|
||||
depth = 6,
|
||||
heads = 16,
|
||||
mlp_dim = 2048,
|
||||
dropout = 0.1,
|
||||
emb_dropout = 0.1
|
||||
)
|
||||
|
||||
img = torch.randn(1, 3, 256, 128) # <-- not a square
|
||||
|
||||
preds = v(img) # (1, 1000)
|
||||
```
|
||||
|
||||
- How do I pass in non-square patches?
|
||||
|
||||
```python
|
||||
import torch
|
||||
from vit_pytorch import ViT
|
||||
|
||||
v = ViT(
|
||||
num_classes = 1000,
|
||||
image_size = (256, 128), # image size is a tuple of (height, width)
|
||||
patch_size = (32, 16), # patch size is a tuple of (height, width)
|
||||
dim = 1024,
|
||||
depth = 6,
|
||||
heads = 16,
|
||||
mlp_dim = 2048,
|
||||
dropout = 0.1,
|
||||
emb_dropout = 0.1
|
||||
)
|
||||
|
||||
img = torch.randn(1, 3, 256, 128)
|
||||
|
||||
preds = v(img)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
Coming from computer vision and new to transformers? Here are some resources that greatly accelerated my learning.
|
||||
|
||||
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '0.17.0',
|
||||
version = '0.17.3',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -83,11 +83,11 @@ class GEGLU(nn.Module):
|
||||
return F.gelu(gates) * x
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0., use_glu = True):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim * 2),
|
||||
GEGLU(),
|
||||
nn.Linear(dim, hidden_dim * 2 if use_glu else hidden_dim),
|
||||
GEGLU() if use_glu else nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
@@ -154,14 +154,14 @@ class Attention(nn.Module):
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., use_rotary = True, use_ds_conv = True):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
self.pos_emb = AxialRotaryEmbedding(dim_head)
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, use_rotary = use_rotary, use_ds_conv = use_ds_conv)),
|
||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout, use_glu = use_glu))
|
||||
]))
|
||||
def forward(self, x, fmap_dims):
|
||||
pos_emb = self.pos_emb(x[:, 1:])
|
||||
@@ -174,7 +174,7 @@ class Transformer(nn.Module):
|
||||
# Rotary Vision Transformer
|
||||
|
||||
class RvT(nn.Module):
|
||||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., use_rotary = True, use_ds_conv = True):
|
||||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True):
|
||||
super().__init__()
|
||||
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
@@ -187,7 +187,7 @@ class RvT(nn.Module):
|
||||
)
|
||||
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, use_rotary, use_ds_conv)
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, use_rotary, use_ds_conv, use_glu)
|
||||
|
||||
self.mlp_head = nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
|
||||
@@ -162,11 +162,11 @@ class Transformer(nn.Module):
|
||||
Residual(PreNorm(dim, FeedForward(dim, mlp_mult, dropout = dropout)))
|
||||
]))
|
||||
def forward(self, x):
|
||||
for local_attn, ff, global_attn, ff in self.layers:
|
||||
for local_attn, ff1, global_attn, ff2 in self.layers:
|
||||
x = local_attn(x)
|
||||
x = ff(x)
|
||||
x = ff1(x)
|
||||
x = global_attn(x)
|
||||
x = ff(x)
|
||||
x = ff2(x)
|
||||
return x
|
||||
|
||||
class TwinsSVT(nn.Module):
|
||||
|
||||
@@ -5,6 +5,13 @@ import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
# classes
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
@@ -74,13 +81,17 @@ class Transformer(nn.Module):
|
||||
class ViT(nn.Module):
|
||||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
|
||||
super().__init__()
|
||||
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
patch_dim = channels * patch_size ** 2
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.Linear(patch_dim, dim),
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user