Compare commits

...

10 Commits
0.2.0 ... 0.2.5

Author SHA1 Message Date
Phil Wang
6d1df1a970 more efficient 2020-10-22 22:37:06 -07:00
Phil Wang
d65a8c17a5 remove dropout from last linear to logits 2020-10-16 13:58:23 -07:00
Phil Wang
f7c164d910 assert minimum number of patches 2020-10-16 12:19:50 -07:00
Phil Wang
c7b74e0bc3 rename ipy notebook 2020-10-14 10:35:46 -07:00
Phil Wang
5b5d98a3a7 dropouts are more specific and aggressive in the paper, thanks for letting me know @hila-chefer 2020-10-14 09:22:16 -07:00
Phil Wang
b0e4790c24 bump package 2020-10-13 13:12:19 -07:00
Phil Wang
0b2b3fc20c add dropouts 2020-10-13 13:11:59 -07:00
Phil Wang
ced464dcb4 Update setup.py 2020-10-11 00:06:26 -07:00
Phil Wang
5bf45a2d4d Merge pull request #4 from adimyth/main
Image Classification Example
2020-10-10 19:12:31 -07:00
adimyth
fa32e22855 adds a classification example using 'cats & dogs' data 2020-10-11 03:15:19 +05:30
4 changed files with 6284 additions and 15 deletions

View File

@@ -23,7 +23,9 @@ v = ViT(
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)

6253
examples/cats_and_dogs.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@@ -2,8 +2,8 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(),
version = '0.2.0',
packages = find_packages(exclude=['examples']),
version = '0.2.5',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',
@@ -25,4 +25,4 @@ setup(
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
)

View File

@@ -3,6 +3,8 @@ import torch.nn.functional as F
from einops import rearrange
from torch import nn
MIN_NUM_PATCHES = 16
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
@@ -19,28 +21,34 @@ class PreNorm(nn.Module):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim)
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8):
def __init__(self, dim, heads = 8, dropout = 0.):
super().__init__()
self.heads = heads
self.scale = dim ** -0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.to_out = nn.Linear(dim, dim)
self.to_out = nn.Sequential(
nn.Linear(dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = h)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
@@ -59,13 +67,13 @@ class Attention(nn.Module):
return out
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim):
def __init__(self, dim, depth, heads, mlp_dim, dropout):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim)))
Residual(PreNorm(dim, Attention(dim, heads = heads, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
]))
def forward(self, x, mask = None):
for attn, ff in self.layers:
@@ -74,18 +82,21 @@ class Transformer(nn.Module):
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dropout = 0., emb_dropout = 0.):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
assert num_patches > MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for attention to be effective. try decreasing your patch size'
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, mlp_dim)
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, mlp_dim, dropout)
self.to_cls_token = nn.Identity()
@@ -93,6 +104,7 @@ class ViT(nn.Module):
nn.LayerNorm(dim),
nn.Linear(dim, mlp_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(mlp_dim, num_classes)
)
@@ -105,6 +117,8 @@ class ViT(nn.Module):
cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.dropout(x)
x = self.transformer(x, mask)
x = self.to_cls_token(x[:, 0])