Compare commits

...

63 Commits

Author SHA1 Message Date
Phil Wang
6db20debb4 add patch merger 2022-03-01 16:50:17 -08:00
Phil Wang
1bae5d3cc5 allow for rectangular images for efficient adapter 2022-01-31 08:55:31 -08:00
Phil Wang
25b384297d return None from extractor if no attention layers 2022-01-28 17:49:58 -08:00
Phil Wang
64a07f50e6 epsilon should be inside square root 2022-01-24 17:24:41 -08:00
Phil Wang
126d204ff2 fix block repeats in readme example for Nest 2022-01-22 21:32:53 -08:00
Phil Wang
c1528acd46 fix feature maps in Nest, thanks to @MarkYangjiayi 2022-01-22 13:17:30 -08:00
Phil Wang
1cc0f182a6 decoder positional embedding needs to be reapplied https://twitter.com/giffmana/status/1479195631587631104 2022-01-06 13:14:41 -08:00
Phil Wang
28eaba6115 0.26.2 2022-01-03 12:56:34 -08:00
Phil Wang
0082301f9e build @jrounds suggestion 2022-01-03 12:56:25 -08:00
Phil Wang
91ed738731 0.26.1 2021-12-30 19:31:26 -08:00
Phil Wang
1b58daa20a Merge pull request #186 from chinhsuanwu/mobilevit
Update MobileViT
2021-12-30 19:31:01 -08:00
chinhsuanwu
f2414b2c1b Update MobileViT 2021-12-30 05:52:23 +08:00
Phil Wang
891b92eb74 readme 2021-12-28 16:00:00 -08:00
Phil Wang
70ba532599 add ViT for small datasets https://arxiv.org/abs/2112.13492 2021-12-28 10:58:21 -08:00
Phil Wang
e52ac41955 allow extractor to only return embeddings, to ready for vision transformers to be used in x-clip 2021-12-25 12:31:21 -08:00
Phil Wang
0891885485 include tests in package for conda 2021-12-22 12:44:29 -08:00
Phil Wang
976f489230 add some tests 2021-12-22 09:13:31 -08:00
Phil Wang
2c368d1d4e add extractor wrapper 2021-12-21 11:11:39 -08:00
Phil Wang
b983bbee39 release MobileViT, from @murufeng 2021-12-21 10:22:59 -08:00
Phil Wang
86a7302ba6 Merge pull request #181 from murufeng/main
Add MobileViT
2021-12-21 09:51:56 -08:00
murufeng
89d3a04b3f Add files via upload 2021-12-21 20:48:34 +08:00
murufeng
e7075c64aa Update README.md 2021-12-21 20:44:30 +08:00
murufeng
5ea1559e4c Add files via upload 2021-12-21 20:41:01 +08:00
Phil Wang
f4b0b14094 add ATS to table of contents 2021-12-03 20:07:18 -08:00
Phil Wang
365b4d931e add adaptive token sampling paper 2021-12-03 19:52:40 -08:00
Phil Wang
79c864d796 link to community youtuber 2021-11-24 08:13:52 -08:00
Phil Wang
b45c1356a1 cleanup 2021-11-22 22:53:02 -08:00
Phil Wang
ff44d97cb0 make initial channels customizable for PiT 2021-11-22 18:08:49 -08:00
Phil Wang
d35345df6a remove wip 2021-11-22 17:43:04 -08:00
Phil Wang
b69b5af34f dynamic positional bias for crossformer the more efficient way as described in appendix of paper 2021-11-22 17:39:36 -08:00
Phil Wang
36e32b70fb complete and release crossformer 2021-11-22 17:10:53 -08:00
Phil Wang
768e47441e crossformer without dynamic position bias 2021-11-22 16:21:55 -08:00
Phil Wang
de0b8ba189 additional diagram 2021-11-22 14:05:39 -08:00
Phil Wang
6665fc6cd1 cleanup region vit 2021-11-22 12:42:24 -08:00
Phil Wang
5b2382f9f0 intent to add 2021-11-22 12:00:03 -08:00
Phil Wang
9f8c60651d clearer mae 2021-11-22 10:19:48 -08:00
Phil Wang
5ae555750f add SimMIM 2021-11-21 15:50:19 -08:00
Phil Wang
c5a461661c Merge pull request #170 from ankandrew/patch-1
add Table of Contents
2021-11-17 16:55:09 -08:00
ankandrew
e212918e2d add Table of Contents 2021-11-17 21:21:19 -03:00
Phil Wang
dc57c75478 cleanup 2021-11-14 12:24:48 -08:00
Phil Wang
99c44cf5f6 readme 2021-11-14 11:49:12 -08:00
Phil Wang
5b16e8f809 readme 2021-11-12 20:19:38 -08:00
Phil Wang
e8f6d72033 release masked autoencoder 2021-11-12 20:08:48 -08:00
Phil Wang
cb1729af28 more efficient feedforward for regionvit 2021-11-07 17:18:59 -08:00
Phil Wang
9e50b2a41e readme 2021-11-07 09:59:49 -08:00
Phil Wang
06d375351e add RegionViT paper 2021-11-07 09:47:28 -08:00
Phil Wang
f196d1ec5b move freqs in RvT to linspace 2021-10-05 09:23:44 -07:00
Phil Wang
529044c9b3 Merge pull request #153 from developer0hye/fix-example
fix transforms for val an test process in example code
2021-09-02 06:57:16 -07:00
yhkwon-DT01
c30655f3bc fix transforms for val an test process 2021-09-02 17:30:18 +09:00
Phil Wang
d2d6de01d3 0.20.7 2021-08-30 08:14:43 -07:00
Phil Wang
b9eadaef60 Merge pull request #151 from developer0hye/patch-1
Cleanup Attention Class & matmul based implementation for TensorRT conversion
2021-08-30 08:14:11 -07:00
Yonghye Kwon
24ac8350bf remove unused package 2021-08-30 18:25:03 +09:00
Yonghye Kwon
ca3cef9de0 Cleanup Attention Class 2021-08-30 18:05:16 +09:00
Phil Wang
6e1be11517 0.20.6 2021-08-21 09:03:54 -07:00
Phil Wang
73ed562ce4 Merge pull request #147 from developer0hye/patch-4
Make T2T process any scale image
2021-08-21 09:03:42 -07:00
Phil Wang
ff863175a6 Merge pull request #146 from developer0hye/patch-1
Make Pit process image with width and height less than the image_size
2021-08-21 09:03:31 -07:00
Yonghye Kwon
ca0bdca192 Make model process any scale image
Related to #145
2021-08-21 22:35:26 +09:00
Yonghye Kwon
1c70271778 Support image with width and height less than the image_size
Related to #145
2021-08-21 22:25:46 +09:00
Phil Wang
d7d3febfe3 Merge pull request #144 from developer0hye/patch-1
Remove unused package
2021-08-20 10:14:02 -07:00
Yonghye Kwon
946815164a Remove unused package 2021-08-20 13:44:57 +09:00
Phil Wang
aeed3381c1 use hardswish for levit 2021-08-19 08:22:55 -07:00
Phil Wang
3f754956fb remove last transformer layer in t2t 2021-08-14 08:06:23 -07:00
Phil Wang
918869571c fix hard distillation, thanks to @CiaoHe 2021-08-12 08:40:57 -07:00
37 changed files with 2134 additions and 49 deletions

33
.github/workflows/python-test.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Test
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.7, 3.8, 3.9]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install pytest
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Test with pytest
run: |
python setup.py test

1
MANIFEST.in Normal file
View File

@@ -0,0 +1 @@
recursive-include tests *

473
README.md
View File

@@ -1,5 +1,40 @@
<img src="./images/vit.gif" width="500px"></img>
## Table of Contents
- [Vision Transformer - Pytorch](#vision-transformer---pytorch)
- [Install](#install)
- [Usage](#usage)
- [Parameters](#parameters)
- [Distillation](#distillation)
- [Deep ViT](#deep-vit)
- [CaiT](#cait)
- [Token-to-Token ViT](#token-to-token-vit)
- [CCT](#cct)
- [Cross ViT](#cross-vit)
- [PiT](#pit)
- [LeViT](#levit)
- [CvT](#cvt)
- [Twins SVT](#twins-svt)
- [CrossFormer](#crossformer)
- [RegionViT](#regionvit)
- [NesT](#nest)
- [MobileViT](#mobilevit)
- [Masked Autoencoder](#masked-autoencoder)
- [Simple Masked Image Modeling](#simple-masked-image-modeling)
- [Masked Patch Prediction](#masked-patch-prediction)
- [Adaptive Token Sampling](#adaptive-token-sampling)
- [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [Dino](#dino)
- [Accessing Attention](#accessing-attention)
- [Research Ideas](#research-ideas)
* [Efficient Attention](#efficient-attention)
* [Combining with other Transformer improvements](#combining-with-other-transformer-improvements)
- [FAQ](#faq)
- [Resources](#resources)
- [Citations](#citations)
## Vision Transformer - Pytorch
Implementation of <a href="https://openreview.net/pdf?id=YicbFdNTTy">Vision Transformer</a>, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch. Significance is further explained in <a href="https://www.youtube.com/watch?v=TrdevFK_am4">Yannic Kilcher's</a> video. There's really not much to code here, but may as well lay it out for everyone so we expedite the attention revolution.
@@ -435,6 +470,61 @@ img = torch.randn(1, 3, 224, 224)
pred = model(img) # (1, 1000)
```
## RegionViT
<img src="./images/regionvit.png" width="400px"></img>
<img src="./images/regionvit2.png" width="400px"></img>
<a href="https://arxiv.org/abs/2106.02689">This paper</a> proposes to divide up the feature map into local regions, whereby the local tokens attend to each other. Each local region has its own regional token which then attends to all its local tokens, as well as other regional tokens.
You can use it as follows
```python
import torch
from vit_pytorch.regionvit import RegionViT
model = RegionViT(
dim = (64, 128, 256, 512), # tuple of size 4, indicating dimension at each stage
depth = (2, 2, 8, 2), # depth of the region to local transformer at each stage
window_size = 7, # window size, which should be either 7 or 14
num_classes = 1000, # number of output classes
tokenize_local_3_conv = False, # whether to use a 3 layer convolution to encode the local tokens from the image. the paper uses this for the smaller models, but uses only 1 conv (set to False) for the larger models
use_peg = False, # whether to use positional generating module. they used this for object detection for a boost in performance
)
img = torch.randn(1, 3, 224, 224)
pred = model(img) # (1, 1000)
```
## CrossFormer
<img src="./images/crossformer.png" width="400px"></img>
<img src="./images/crossformer2.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2108.00154">paper</a> beats PVT and Swin using alternating local and global attention. The global attention is done across the windowing dimension for reduced complexity, much like the scheme used for axial attention.
They also have cross-scale embedding layer, which they shown to be a generic layer that can improve all vision transformers. Dynamic relative positional bias was also formulated to allow the net to generalize to images of greater resolution.
```python
import torch
from vit_pytorch.crossformer import CrossFormer
model = CrossFormer(
num_classes = 1000, # number of output classes
dim = (64, 128, 256, 512), # dimension at each stage
depth = (2, 2, 8, 2), # depth of transformer at each stage
global_window_size = (8, 4, 2, 1), # global window sizes at each stage
local_window_size = 7, # local window size (can be customized for each stage, but in paper, held constant at 7 for all stages)
)
img = torch.randn(1, 3, 224, 224)
pred = model(img) # (1, 1000)
```
## NesT
<img src="./images/nest.png" width="400px"></img>
@@ -453,14 +543,125 @@ nest = NesT(
dim = 96,
heads = 3,
num_hierarchies = 3, # number of hierarchies
block_repeats = (8, 4, 1), # the number of transformer blocks at each heirarchy, starting from the bottom
block_repeats = (2, 2, 8), # the number of transformer blocks at each heirarchy, starting from the bottom
num_classes = 1000
)
img = torch.randn(1, 3, 224, 224)
pred = nest(img) # (1, 1000)
```
## MobileViT
<img src="./images/mbvit.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2110.02178">paper</a> introduce MobileViT, a light-weight and general purpose vision transformer for mobile devices. MobileViT presents a different
perspective for the global processing of information with transformers.
You can use it with the following code (ex. mobilevit_xs)
```python
import torch
from vit_pytorch.mobile_vit import MobileViT
mbvit_xs = MobileViT(
image_size = (256, 256),
dims = [96, 120, 144],
channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384],
num_classes = 1000
)
img = torch.randn(1, 3, 256, 256)
pred = mbvit_xs(img) # (1, 1000)
```
## Simple Masked Image Modeling
<img src="./images/simmim.png" width="400px"/>
This <a href="https://arxiv.org/abs/2111.09886">paper</a> proposes a simple masked image modeling (SimMIM) scheme, using only a linear projection off the masked tokens into pixel space followed by an L1 loss with the pixel values of the masked patches. Results are competitive with other more complicated approaches.
You can use this as follows
```python
import torch
from vit_pytorch import ViT
from vit_pytorch.simmim import SimMIM
v = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048
)
mim = SimMIM(
encoder = v,
masking_ratio = 0.5 # they found 50% to yield the best results
)
images = torch.randn(8, 3, 256, 256)
loss = mim(images)
loss.backward()
# that's all!
# do the above in a for loop many times with a lot of images and your vision transformer will learn
torch.save(v.state_dict(), './trained-vit.pt')
```
## Masked Autoencoder
<img src="./images/mae.png" width="400px"/>
A new <a href="https://arxiv.org/abs/2111.06377">Kaiming He paper</a> proposes a simple autoencoder scheme where the vision transformer attends to a set of unmasked patches, and a smaller decoder tries to reconstruct the masked pixel values.
<a href="https://www.youtube.com/watch?v=LKixq2S2Pz8">DeepReader quick paper review</a>
<a href="https://www.youtube.com/watch?v=Dp6iICL2dVI">AI Coffeebreak with Letitia</a>
You can use it with the following code
```python
import torch
from vit_pytorch import ViT, MAE
v = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048
)
mae = MAE(
encoder = v,
masking_ratio = 0.75, # the paper recommended 75% masked patches
decoder_dim = 512, # paper showed good results with just 512
decoder_depth = 6 # anywhere from 1 to 8
)
images = torch.randn(8, 3, 256, 256)
loss = mae(images)
loss.backward()
# that's all!
# do the above in a for loop many times with a lot of images and your vision transformer will learn
# save your improved vision transformer
torch.save(v.state_dict(), './trained-vit.pt')
```
## Masked Patch Prediction
Thanks to <a href="https://github.com/zankner">Zach</a>, you can train using the original masked patch prediction task presented in the paper, with the following code.
@@ -507,6 +708,131 @@ for _ in range(100):
torch.save(model.state_dict(), './pretrained-net.pt')
```
## Adaptive Token Sampling
<img src="./images/ats.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2111.15667">paper</a> proposes to use the CLS attention scores, re-weighed by the norms of the value heads, as means to discard unimportant tokens at different layers.
```python
import torch
from vit_pytorch.ats_vit import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
max_tokens_per_depth = (256, 128, 64, 32, 16, 8), # a tuple that denotes the maximum number of tokens that any given layer should have. if the layer has greater than this amount, it will undergo adaptive token sampling
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (4, 1000)
# you can also get a list of the final sampled patch ids
# a value of -1 denotes padding
preds, token_ids = v(img, return_sampled_token_ids = True) # (4, 1000), (4, <=8)
```
## Patch Merger
<img src="./images/patch_merger.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2202.12015">paper</a> proposes a simple module (Patch Merger) for reducing the number of tokens at any layer of a vision transformer without sacrificing performance.
```python
import torch
from vit_pytorch.vit_with_patch_merger import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 12,
heads = 8,
patch_merge_layer = 6, # at which transformer layer to do patch merging
patch_merge_num_tokens = 8, # the output number of tokens from the patch merge
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (4, 1000)
```
One can also use the `PatchMerger` module by itself
```python
import torch
from vit_pytorch.vit_with_patch_merger import PatchMerger
merger = PatchMerger(
dim = 1024,
num_tokens_out = 8 # output number of tokens
)
features = torch.randn(4, 256, 1024) # (batch, num tokens, dimension)
out = merger(features) # (4, 8, 1024)
```
## Vision Transformer for Small Datasets
<img src="./images/vit_for_small_datasets.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2112.13492">paper</a> proposes a new image to patch function that incorporates shifts of the image, before normalizing and dividing the image into patches. I have found shifting to be extremely helpful in some other transformers work, so decided to include this for further explorations. It also includes the `LSA` with the learned temperature and masking out of a token's attention to itself.
You can use as follows:
```python
import torch
from vit_pytorch.vit_for_small_dataset import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (1, 1000)
```
You can also use the `SPT` from this paper as a standalone module
```python
import torch
from vit_pytorch.vit_for_small_dataset import SPT
spt = SPT(
dim = 1024,
patch_size = 16,
channels = 3
)
img = torch.randn(4, 3, 256, 256)
tokens = spt(img) # (4, 256, 1024)
```
## Dino
<img src="./images/dino.png" width="350px"></img>
@@ -602,6 +928,41 @@ to cleanup the class and the hooks once you have collected enough data
v = v.eject() # wrapper is discarded and original ViT instance is returned
```
## Accessing Embeddings
You can similarly access the embeddings with the `Extractor` wrapper
```python
import torch
from vit_pytorch.vit import ViT
v = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
# import Recorder and wrap the ViT
from vit_pytorch.extractor import Extractor
v = Extractor(v)
# forward pass now returns predictions and the attention maps
img = torch.randn(1, 3, 256, 256)
logits, embeddings = v(img)
# there is one extra token due to the CLS token
embeddings # (1, 65, 1024) - (batch x patches x model dim)
```
## Research Ideas
### Efficient Attention
@@ -739,13 +1100,13 @@ Coming from computer vision and new to transformers? Here are some resources tha
## Citations
```bibtex
@article{hassani2021escaping,
title = {Escaping the Big Data Paradigm with Compact Transformers},
author = {Ali Hassani and Steven Walton and Nikhil Shah and Abulikemu Abuduweili and Jiachen Li and Humphrey Shi},
year = 2021,
url = {https://arxiv.org/abs/2104.05704},
eprint = {2104.05704},
archiveprefix = {arXiv},
primaryclass = {cs.CV}
title = {Escaping the Big Data Paradigm with Compact Transformers},
author = {Ali Hassani and Steven Walton and Nikhil Shah and Abulikemu Abuduweili and Jiachen Li and Humphrey Shi},
year = 2021,
url = {https://arxiv.org/abs/2104.05704},
eprint = {2104.05704},
archiveprefix = {arXiv},
primaryclass = {cs.CV}
}
```
@@ -773,10 +1134,10 @@ Coming from computer vision and new to transformers? Here are some resources tha
```bibtex
@misc{yuan2021tokenstotoken,
title = {Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet},
author = {Li Yuan and Yunpeng Chen and Tao Wang and Weihao Yu and Yujun Shi and Francis EH Tay and Jiashi Feng and Shuicheng Yan},
year = {2021},
eprint = {2101.11986},
title = {Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet},
author = {Li Yuan and Yunpeng Chen and Tao Wang and Weihao Yu and Yujun Shi and Francis EH Tay and Jiashi Feng and Shuicheng Yan},
year = {2021},
eprint = {2101.11986},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
@@ -892,6 +1253,28 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@misc{chen2021regionvit,
title = {RegionViT: Regional-to-Local Attention for Vision Transformers},
author = {Chun-Fu Chen and Rameswar Panda and Quanfu Fan},
year = {2021},
eprint = {2106.02689},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{wang2021crossformer,
title = {CrossFormer: A Versatile Vision Transformer Hinging on Cross-scale Attention},
author = {Wenxiao Wang and Lu Yao and Long Chen and Binbin Lin and Deng Cai and Xiaofei He and Wei Liu},
year = {2021},
eprint = {2108.00154},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{caron2021emerging,
title = {Emerging Properties in Self-Supervised Vision Transformers},
@@ -903,6 +1286,72 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@misc{he2021masked,
title = {Masked Autoencoders Are Scalable Vision Learners},
author = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Dollár and Ross Girshick},
year = {2021},
eprint = {2111.06377},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{xie2021simmim,
title = {SimMIM: A Simple Framework for Masked Image Modeling},
author = {Zhenda Xie and Zheng Zhang and Yue Cao and Yutong Lin and Jianmin Bao and Zhuliang Yao and Qi Dai and Han Hu},
year = {2021},
eprint = {2111.09886},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{fayyaz2021ats,
title = {ATS: Adaptive Token Sampling For Efficient Vision Transformers},
author = {Mohsen Fayyaz and Soroush Abbasi Kouhpayegani and Farnoush Rezaei Jafari and Eric Sommerlade and Hamid Reza Vaezi Joze and Hamed Pirsiavash and Juergen Gall},
year = {2021},
eprint = {2111.15667},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{mehta2021mobilevit,
title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer},
author = {Sachin Mehta and Mohammad Rastegari},
year = {2021},
eprint = {2110.02178},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{lee2021vision,
title = {Vision Transformer for Small-Size Datasets},
author = {Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song},
year = {2021},
eprint = {2112.13492},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{renggli2022learning,
title = {Learning to Merge Tokens in Vision Transformers},
author = {Cedric Renggli and André Susano Pinto and Neil Houlsby and Basil Mustafa and Joan Puigcerver and Carlos Riquelme},
year = {2022},
eprint = {2202.12015},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},

View File

@@ -364,9 +364,8 @@
"\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.Resize((224, 224)),\n",
" transforms.RandomResizedCrop(224),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" ]\n",
")\n",
@@ -374,9 +373,8 @@
"\n",
"test_transforms = transforms.Compose(\n",
" [\n",
" transforms.Resize((224, 224)),\n",
" transforms.RandomResizedCrop(224),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" ]\n",
")\n"
@@ -6250,4 +6248,4 @@
},
"nbformat": 4,
"nbformat_minor": 1
}
}

BIN
images/ats.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 198 KiB

BIN
images/crossformer.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 169 KiB

BIN
images/crossformer2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 237 KiB

BIN
images/mae.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 198 KiB

BIN
images/mbvit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 206 KiB

BIN
images/patch_merger.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

BIN
images/regionvit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

BIN
images/regionvit2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

BIN
images/simmim.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 365 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.20.2',
version = '0.27.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',
@@ -19,6 +19,12 @@ setup(
'torch>=1.6',
'torchvision'
],
setup_requires=[
'pytest-runner',
],
tests_require=[
'pytest'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',

20
tests/test.py Normal file
View File

@@ -0,0 +1,20 @@
import torch
from vit_pytorch import ViT
def test():
v = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)
preds = v(img)
assert preds.shape == (1, 1000), 'correct logits outputted'

View File

@@ -1,2 +1,3 @@
from vit_pytorch.vit import ViT
from vit_pytorch.mae import MAE
from vit_pytorch.dino import Dino

262
vit_pytorch/ats_vit.py Normal file
View File

@@ -0,0 +1,262 @@
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# adaptive token sampling functions and classes
def log(t, eps = 1e-6):
return torch.log(t + eps)
def sample_gumbel(shape, device, dtype, eps = 1e-6):
u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1)
return -log(-log(u, eps), eps)
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
class AdaptiveTokenSampling(nn.Module):
def __init__(self, output_num_tokens, eps = 1e-6):
super().__init__()
self.eps = eps
self.output_num_tokens = output_num_tokens
def forward(self, attn, value, mask):
heads, output_num_tokens, eps, device, dtype = attn.shape[1], self.output_num_tokens, self.eps, attn.device, attn.dtype
# first get the attention values for CLS token to all other tokens
cls_attn = attn[..., 0, 1:]
# calculate the norms of the values, for weighting the scores, as described in the paper
value_norms = value[..., 1:, :].norm(dim = -1)
# weigh the attention scores by the norm of the values, sum across all heads
cls_attn = einsum('b h n, b h n -> b n', cls_attn, value_norms)
# normalize to 1
normed_cls_attn = cls_attn / (cls_attn.sum(dim = -1, keepdim = True) + eps)
# instead of using inverse transform sampling, going to invert the softmax and use gumbel-max sampling instead
pseudo_logits = log(normed_cls_attn)
# mask out pseudo logits for gumbel-max sampling
mask_without_cls = mask[:, 1:]
mask_value = -torch.finfo(attn.dtype).max / 2
pseudo_logits = pseudo_logits.masked_fill(~mask_without_cls, mask_value)
# expand k times, k being the adaptive sampling number
pseudo_logits = repeat(pseudo_logits, 'b n -> b k n', k = output_num_tokens)
pseudo_logits = pseudo_logits + sample_gumbel(pseudo_logits.shape, device = device, dtype = dtype)
# gumble-max and add one to reserve 0 for padding / mask
sampled_token_ids = pseudo_logits.argmax(dim = -1) + 1
# calculate unique using torch.unique and then pad the sequence from the right
unique_sampled_token_ids_list = [torch.unique(t, sorted = True) for t in torch.unbind(sampled_token_ids)]
unique_sampled_token_ids = pad_sequence(unique_sampled_token_ids_list, batch_first = True)
# calculate the new mask, based on the padding
new_mask = unique_sampled_token_ids != 0
# CLS token never gets masked out (gets a value of True)
new_mask = F.pad(new_mask, (1, 0), value = True)
# prepend a 0 token id to keep the CLS attention scores
unique_sampled_token_ids = F.pad(unique_sampled_token_ids, (1, 0), value = 0)
expanded_unique_sampled_token_ids = repeat(unique_sampled_token_ids, 'b n -> b h n', h = heads)
# gather the new attention scores
new_attn = batched_index_select(attn, expanded_unique_sampled_token_ids, dim = 2)
# return the sampled attention scores, new mask (denoting padding), as well as the sampled token indices (for the residual)
return new_attn, new_mask, unique_sampled_token_ids
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., output_num_tokens = None):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.output_num_tokens = output_num_tokens
self.ats = AdaptiveTokenSampling(output_num_tokens) if exists(output_num_tokens) else None
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, *, mask):
num_tokens = x.shape[1]
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
if exists(mask):
dots_mask = rearrange(mask, 'b i -> b 1 i 1') * rearrange(mask, 'b j -> b 1 1 j')
mask_value = -torch.finfo(dots.dtype).max
dots = dots.masked_fill(~dots_mask, mask_value)
attn = self.attend(dots)
sampled_token_ids = None
# if adaptive token sampling is enabled
# and number of tokens is greater than the number of output tokens
if exists(self.output_num_tokens) and (num_tokens - 1) > self.output_num_tokens:
attn, mask, sampled_token_ids = self.ats(attn, v, mask = mask)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out), mask, sampled_token_ids
class Transformer(nn.Module):
def __init__(self, dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
assert len(max_tokens_per_depth) == depth, 'max_tokens_per_depth must be a tuple of length that is equal to the depth of the transformer'
assert sorted(max_tokens_per_depth, reverse = True) == list(max_tokens_per_depth), 'max_tokens_per_depth must be in decreasing order'
assert min(max_tokens_per_depth) > 0, 'max_tokens_per_depth must have at least 1 token at any layer'
self.layers = nn.ModuleList([])
for _, output_num_tokens in zip(range(depth), max_tokens_per_depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
b, n, device = *x.shape[:2], x.device
# use mask to keep track of the paddings when sampling tokens
# as the duplicates (when sampling) are just removed, as mentioned in the paper
mask = torch.ones((b, n), device = device, dtype = torch.bool)
token_ids = torch.arange(n, device = device)
token_ids = repeat(token_ids, 'n -> b n', b = b)
for attn, ff in self.layers:
attn_out, mask, sampled_token_ids = attn(x, mask = mask)
# when token sampling, one needs to then gather the residual tokens with the sampled token ids
if exists(sampled_token_ids):
x = batched_index_select(x, sampled_token_ids, dim = 1)
token_ids = batched_index_select(token_ids, sampled_token_ids, dim = 1)
x = x + attn_out
x = ff(x) + x
return x, token_ids
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, max_tokens_per_depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img, return_sampled_token_ids = False):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x, token_ids = self.transformer(x)
logits = self.mlp_head(x[:, 0])
if return_sampled_token_ids:
# remove CLS token and decrement by 1 to make -1 the padding
token_ids = token_ids[:, 1:] - 1
return logits, token_ids
return logits

263
vit_pytorch/crossformer.py Normal file
View File

@@ -0,0 +1,263 @@
import torch
from torch import nn, einsum
from einops import rearrange
from einops.layers.torch import Rearrange, Reduce
import torch.nn.functional as F
# helpers
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
# cross embed layer
class CrossEmbedLayer(nn.Module):
def __init__(
self,
dim_in,
dim_out,
kernel_sizes,
stride = 2
):
super().__init__()
kernel_sizes = sorted(kernel_sizes)
num_scales = len(kernel_sizes)
# calculate the dimension at each scale
dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)]
dim_scales = [*dim_scales, dim_out - sum(dim_scales)]
self.convs = nn.ModuleList([])
for kernel, dim_scale in zip(kernel_sizes, dim_scales):
self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2))
def forward(self, x):
fmaps = tuple(map(lambda conv: conv(x), self.convs))
return torch.cat(fmaps, dim = 1)
# dynamic positional bias
def DynamicPositionBias(dim):
return nn.Sequential(
nn.Linear(2, dim),
nn.LayerNorm(dim),
nn.ReLU(),
nn.Linear(dim, dim),
nn.LayerNorm(dim),
nn.ReLU(),
nn.Linear(dim, dim),
nn.LayerNorm(dim),
nn.ReLU(),
nn.Linear(dim, 1),
Rearrange('... () -> ...')
)
# transformer classes
class LayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
def FeedForward(dim, mult = 4, dropout = 0.):
return nn.Sequential(
LayerNorm(dim),
nn.Conv2d(dim, dim * mult, 1),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(dim * mult, dim, 1)
)
class Attention(nn.Module):
def __init__(
self,
dim,
attn_type,
window_size,
dim_head = 32,
dropout = 0.
):
super().__init__()
assert attn_type in {'short', 'long'}, 'attention type must be one of local or distant'
heads = dim // dim_head
self.heads = heads
self.scale = dim_head ** -0.5
inner_dim = dim_head * heads
self.attn_type = attn_type
self.window_size = window_size
self.norm = LayerNorm(dim)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(inner_dim, dim, 1)
# positions
self.dpb = DynamicPositionBias(dim // 4)
# calculate and store indices for retrieving bias
pos = torch.arange(window_size)
grid = torch.stack(torch.meshgrid(pos, pos))
grid = rearrange(grid, 'c i j -> (i j) c')
rel_pos = grid[:, None] - grid[None, :]
rel_pos += window_size - 1
rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1)
self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False)
def forward(self, x):
*_, height, width, heads, wsz, device = *x.shape, self.heads, self.window_size, x.device
# prenorm
x = self.norm(x)
# rearrange for short or long distance attention
if self.attn_type == 'short':
x = rearrange(x, 'b d (h s1) (w s2) -> (b h w) d s1 s2', s1 = wsz, s2 = wsz)
elif self.attn_type == 'long':
x = rearrange(x, 'b d (l1 h) (l2 w) -> (b h w) d l1 l2', l1 = wsz, l2 = wsz)
# queries / keys / values
q, k, v = self.to_qkv(x).chunk(3, dim = 1)
# split heads
q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> b h (x y) d', h = heads), (q, k, v))
q = q * self.scale
sim = einsum('b h i d, b h j d -> b h i j', q, k)
# add dynamic positional bias
pos = torch.arange(-wsz, wsz + 1, device = device)
rel_pos = torch.stack(torch.meshgrid(pos, pos))
rel_pos = rearrange(rel_pos, 'c i j -> (i j) c')
biases = self.dpb(rel_pos.float())
rel_pos_bias = biases[self.rel_pos_indices]
sim = sim + rel_pos_bias
# attend
attn = sim.softmax(dim = -1)
# merge heads
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = wsz, y = wsz)
out = self.to_out(out)
# rearrange back for long or short distance attention
if self.attn_type == 'short':
out = rearrange(out, '(b h w) d s1 s2 -> b d (h s1) (w s2)', h = height // wsz, w = width // wsz)
elif self.attn_type == 'long':
out = rearrange(out, '(b h w) d l1 l2 -> b d (l1 h) (l2 w)', h = height // wsz, w = width // wsz)
return out
class Transformer(nn.Module):
def __init__(
self,
dim,
*,
local_window_size,
global_window_size,
depth = 4,
dim_head = 32,
attn_dropout = 0.,
ff_dropout = 0.,
):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, attn_type = 'short', window_size = local_window_size, dim_head = dim_head, dropout = attn_dropout),
FeedForward(dim, dropout = ff_dropout),
Attention(dim, attn_type = 'long', window_size = global_window_size, dim_head = dim_head, dropout = attn_dropout),
FeedForward(dim, dropout = ff_dropout)
]))
def forward(self, x):
for short_attn, short_ff, long_attn, long_ff in self.layers:
x = short_attn(x) + x
x = short_ff(x) + x
x = long_attn(x) + x
x = long_ff(x) + x
return x
# classes
class CrossFormer(nn.Module):
def __init__(
self,
*,
dim = (64, 128, 256, 512),
depth = (2, 2, 8, 2),
global_window_size = (8, 4, 2, 1),
local_window_size = 7,
cross_embed_kernel_sizes = ((4, 8, 16, 32), (2, 4), (2, 4), (2, 4)),
cross_embed_strides = (4, 2, 2, 2),
num_classes = 1000,
attn_dropout = 0.,
ff_dropout = 0.,
channels = 3
):
super().__init__()
dim = cast_tuple(dim, 4)
depth = cast_tuple(depth, 4)
global_window_size = cast_tuple(global_window_size, 4)
local_window_size = cast_tuple(local_window_size, 4)
cross_embed_kernel_sizes = cast_tuple(cross_embed_kernel_sizes, 4)
cross_embed_strides = cast_tuple(cross_embed_strides, 4)
assert len(dim) == 4
assert len(depth) == 4
assert len(global_window_size) == 4
assert len(local_window_size) == 4
assert len(cross_embed_kernel_sizes) == 4
assert len(cross_embed_strides) == 4
# dimensions
last_dim = dim[-1]
dims = [channels, *dim]
dim_in_and_out = tuple(zip(dims[:-1], dims[1:]))
# layers
self.layers = nn.ModuleList([])
for (dim_in, dim_out), layers, global_wsz, local_wsz, cel_kernel_sizes, cel_stride in zip(dim_in_and_out, depth, global_window_size, local_window_size, cross_embed_kernel_sizes, cross_embed_strides):
self.layers.append(nn.ModuleList([
CrossEmbedLayer(dim_in, dim_out, cel_kernel_sizes, stride = cel_stride),
Transformer(dim_out, local_window_size = local_wsz, global_window_size = global_wsz, depth = layers, attn_dropout = attn_dropout, ff_dropout = ff_dropout)
]))
# final logits
self.to_logits = nn.Sequential(
Reduce('b c h w -> b c', 'mean'),
nn.Linear(last_dim, num_classes)
)
def forward(self, x):
for cel, transformer in self.layers:
x = cel(x)
x = transformer(x)
return self.to_logits(x)

View File

@@ -30,9 +30,9 @@ class LayerNorm(nn.Module): # layernorm, but done in the channel dimension #1
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):

View File

@@ -148,6 +148,6 @@ class DistillWrapper(nn.Module):
else:
teacher_labels = teacher_logits.argmax(dim = -1)
distill_loss = F.cross_entropy(student_logits, teacher_labels)
distill_loss = F.cross_entropy(distill_logits, teacher_labels)
return loss * (1 - alpha) + distill_loss * alpha

View File

@@ -3,12 +3,16 @@ from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
def pair(t):
return t if isinstance(t, tuple) else (t, t)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, transformer, pool = 'cls', channels = 3):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
image_size_h, image_size_w = pair(image_size)
assert image_size_h % patch_size == 0 and image_size_w % patch_size == 0, 'image dimensions must be divisible by the patch size'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
num_patches = (image_size // patch_size) ** 2
num_patches = (image_size_h // patch_size) * (image_size_w // patch_size)
patch_dim = channels * patch_size ** 2
self.to_patch_embedding = nn.Sequential(

70
vit_pytorch/extractor.py Normal file
View File

@@ -0,0 +1,70 @@
import torch
from torch import nn
def exists(val):
return val is not None
class Extractor(nn.Module):
def __init__(
self,
vit,
device = None,
layer_name = 'transformer',
layer_save_input = False,
return_embeddings_only = False
):
super().__init__()
self.vit = vit
self.data = None
self.latents = None
self.hooks = []
self.hook_registered = False
self.ejected = False
self.device = device
self.layer_name = layer_name
self.layer_save_input = layer_save_input # whether to save input or output of layer
self.return_embeddings_only = return_embeddings_only
def _hook(self, _, inputs, output):
tensor_to_save = inputs if self.layer_save_input else output
self.latents = tensor_to_save.clone().detach()
def _register_hook(self):
assert hasattr(self.vit, self.layer_name), 'layer whose output to take as embedding not found in vision transformer'
layer = getattr(self.vit, self.layer_name)
handle = layer.register_forward_hook(self._hook)
self.hooks.append(handle)
self.hook_registered = True
def eject(self):
self.ejected = True
for hook in self.hooks:
hook.remove()
self.hooks.clear()
return self.vit
def clear(self):
del self.latents
self.latents = None
def forward(
self,
img,
return_embeddings_only = False
):
assert not self.ejected, 'extractor has been ejected, cannot be used anymore'
self.clear()
if not self.hook_registered:
self._register_hook()
pred = self.vit(img)
target_device = self.device if exists(self.device) else img.device
latents = self.latents.to(target_device)
if return_embeddings_only or self.return_embeddings_only:
return latents
return pred, latents

View File

@@ -29,7 +29,7 @@ class FeedForward(nn.Module):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim, dim * mult, 1),
nn.GELU(),
nn.Hardswish(),
nn.Dropout(dropout),
nn.Conv2d(dim * mult, dim, 1),
nn.Dropout(dropout)

96
vit_pytorch/mae.py Normal file
View File

@@ -0,0 +1,96 @@
import torch
from torch import nn
import torch.nn.functional as F
from einops import repeat
from vit_pytorch.vit import Transformer
class MAE(nn.Module):
def __init__(
self,
*,
encoder,
decoder_dim,
masking_ratio = 0.75,
decoder_depth = 1,
decoder_heads = 8,
decoder_dim_head = 64
):
super().__init__()
assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1'
self.masking_ratio = masking_ratio
# extract some hyperparameters and functions from encoder (vision transformer to be trained)
self.encoder = encoder
num_patches, encoder_dim = encoder.pos_embedding.shape[-2:]
self.to_patch, self.patch_to_emb = encoder.to_patch_embedding[:2]
pixel_values_per_patch = self.patch_to_emb.weight.shape[-1]
# decoder parameters
self.enc_to_dec = nn.Linear(encoder_dim, decoder_dim) if encoder_dim != decoder_dim else nn.Identity()
self.mask_token = nn.Parameter(torch.randn(decoder_dim))
self.decoder = Transformer(dim = decoder_dim, depth = decoder_depth, heads = decoder_heads, dim_head = decoder_dim_head, mlp_dim = decoder_dim * 4)
self.decoder_pos_emb = nn.Embedding(num_patches, decoder_dim)
self.to_pixels = nn.Linear(decoder_dim, pixel_values_per_patch)
def forward(self, img):
device = img.device
# get patches
patches = self.to_patch(img)
batch, num_patches, *_ = patches.shape
# patch to encoder tokens and add positions
tokens = self.patch_to_emb(patches)
tokens = tokens + self.encoder.pos_embedding[:, 1:(num_patches + 1)]
# calculate of patches needed to be masked, and get random indices, dividing it up for mask vs unmasked
num_masked = int(self.masking_ratio * num_patches)
rand_indices = torch.rand(batch, num_patches, device = device).argsort(dim = -1)
masked_indices, unmasked_indices = rand_indices[:, :num_masked], rand_indices[:, num_masked:]
# get the unmasked tokens to be encoded
batch_range = torch.arange(batch, device = device)[:, None]
tokens = tokens[batch_range, unmasked_indices]
# get the patches to be masked for the final reconstruction loss
masked_patches = patches[batch_range, masked_indices]
# attend with vision transformer
encoded_tokens = self.encoder.transformer(tokens)
# project encoder to decoder dimensions, if they are not equal - the paper says you can get away with a smaller dimension for decoder
decoder_tokens = self.enc_to_dec(encoded_tokens)
# reapply decoder position embedding to unmasked tokens
decoder_tokens = decoder_tokens + self.decoder_pos_emb(unmasked_indices)
# repeat mask tokens for number of masked, and add the positions using the masked indices derived above
mask_tokens = repeat(self.mask_token, 'd -> b n d', b = batch, n = num_masked)
mask_tokens = mask_tokens + self.decoder_pos_emb(masked_indices)
# concat the masked tokens to the decoder tokens and attend with decoder
decoder_tokens = torch.cat((mask_tokens, decoder_tokens), dim = 1)
decoded_tokens = self.decoder(decoder_tokens)
# splice out the mask tokens and project to pixel values
mask_tokens = decoded_tokens[:, :num_masked]
pred_pixel_values = self.to_pixels(mask_tokens)
# calculate reconstruction loss
recon_loss = F.mse_loss(pred_pixel_values, masked_patches)
return recon_loss

247
vit_pytorch/mobile_vit.py Normal file
View File

@@ -0,0 +1,247 @@
import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Reduce
# helpers
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.SiLU()
)
def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
return nn.Sequential(
nn.Conv2d(inp, oup, kernal_size, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.SiLU()
)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(
t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b p h n d -> b p n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
"""Transformer block described in ViT.
Paper: https://arxiv.org/abs/2010.11929
Based on: https://github.com/lucidrains/vit-pytorch
"""
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class MV2Block(nn.Module):
"""MV2 block described in MobileNetV2.
Paper: https://arxiv.org/pdf/1801.04381
Based on: https://github.com/tonylins/pytorch-mobilenet-v2
"""
def __init__(self, inp, oup, stride=1, expansion=4):
super().__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(inp * expansion)
self.use_res_connect = self.stride == 1 and inp == oup
if expansion == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride,
1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride,
1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
out = self.conv(x)
if self.use_res_connect:
out = out + x
return out
class MobileViTBlock(nn.Module):
def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
super().__init__()
self.ph, self.pw = patch_size
self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
self.conv2 = conv_1x1_bn(channel, dim)
self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)
self.conv3 = conv_1x1_bn(dim, channel)
self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
def forward(self, x):
y = x.clone()
# Local representations
x = self.conv1(x)
x = self.conv2(x)
# Global representations
_, _, h, w = x.shape
x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d',
ph=self.ph, pw=self.pw)
x = self.transformer(x)
x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)',
h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw)
# Fusion
x = self.conv3(x)
x = torch.cat((x, y), 1)
x = self.conv4(x)
return x
class MobileViT(nn.Module):
"""MobileViT.
Paper: https://arxiv.org/abs/2110.02178
Based on: https://github.com/chinhsuanwu/mobilevit-pytorch
"""
def __init__(
self,
image_size,
dims,
channels,
num_classes,
expansion=4,
kernel_size=3,
patch_size=(2, 2),
depths=(2, 4, 3)
):
super().__init__()
assert len(dims) == 3, 'dims must be a tuple of 3'
assert len(depths) == 3, 'depths must be a tuple of 3'
ih, iw = image_size
ph, pw = patch_size
assert ih % ph == 0 and iw % pw == 0
init_dim, *_, last_dim = channels
self.conv1 = conv_nxn_bn(3, init_dim, stride=2)
self.stem = nn.ModuleList([])
self.stem.append(MV2Block(channels[0], channels[1], 1, expansion))
self.stem.append(MV2Block(channels[1], channels[2], 2, expansion))
self.stem.append(MV2Block(channels[2], channels[3], 1, expansion))
self.stem.append(MV2Block(channels[2], channels[3], 1, expansion))
self.trunk = nn.ModuleList([])
self.trunk.append(nn.ModuleList([
MV2Block(channels[3], channels[4], 2, expansion),
MobileViTBlock(dims[0], depths[0], channels[5],
kernel_size, patch_size, int(dims[0] * 2))
]))
self.trunk.append(nn.ModuleList([
MV2Block(channels[5], channels[6], 2, expansion),
MobileViTBlock(dims[1], depths[1], channels[7],
kernel_size, patch_size, int(dims[1] * 4))
]))
self.trunk.append(nn.ModuleList([
MV2Block(channels[7], channels[8], 2, expansion),
MobileViTBlock(dims[2], depths[2], channels[9],
kernel_size, patch_size, int(dims[2] * 4))
]))
self.to_logits = nn.Sequential(
conv_1x1_bn(channels[-2], last_dim),
Reduce('b c h w -> b c', 'mean'),
nn.Linear(channels[-1], num_classes, bias=False)
)
def forward(self, x):
x = self.conv1(x)
for conv in self.stem:
x = conv(x)
for conv, attn in self.trunk:
x = conv(x)
x = attn(x)
return self.to_logits(x)

View File

@@ -20,9 +20,9 @@ class LayerNorm(nn.Module):
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
@@ -131,10 +131,11 @@ class NesT(nn.Module):
seq_len = (fmap_size // blocks) ** 2 # sequence length is held constant across heirarchy
hierarchies = list(reversed(range(num_hierarchies)))
mults = [2 ** i for i in hierarchies]
mults = [2 ** i for i in reversed(hierarchies)]
layer_heads = list(map(lambda t: t * heads, mults))
layer_dims = list(map(lambda t: t * dim, mults))
last_dim = layer_dims[-1]
layer_dims = [*layer_dims, layer_dims[-1]]
dim_pairs = zip(layer_dims[:-1], layer_dims[1:])
@@ -157,10 +158,11 @@ class NesT(nn.Module):
Aggregate(dim_in, dim_out) if not is_last else nn.Identity()
]))
self.mlp_head = nn.Sequential(
LayerNorm(dim),
LayerNorm(last_dim),
Reduce('b c h w -> b c', 'mean'),
nn.Linear(dim, num_classes)
nn.Linear(last_dim, num_classes)
)
def forward(self, img):

View File

@@ -129,14 +129,15 @@ class PiT(nn.Module):
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.
emb_dropout = 0.,
channels = 3
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing'
heads = cast_tuple(heads, len(depth))
patch_dim = 3 * patch_size ** 2
patch_dim = channels * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
nn.Unfold(kernel_size = patch_size, stride = patch_size // 2),
@@ -175,7 +176,7 @@ class PiT(nn.Module):
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x += self.pos_embedding[:, :n+1]
x = self.dropout(x)
x = self.layers(x)

View File

@@ -55,5 +55,5 @@ class Recorder(nn.Module):
target_device = self.device if self.device is not None else img.device
recordings = tuple(map(lambda t: t.to(target_device), self.recordings))
attns = torch.stack(recordings, dim = 1)
attns = torch.stack(recordings, dim = 1) if len(recordings) > 0 else None
return pred, attns

263
vit_pytorch/regionvit.py Normal file
View File

@@ -0,0 +1,263 @@
import torch
from torch import nn, einsum
from einops import rearrange
from einops.layers.torch import Rearrange, Reduce
import torch.nn.functional as F
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
def divisible_by(val, d):
return (val % d) == 0
# helper classes
class Downsample(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.conv = nn.Conv2d(dim_in, dim_out, 3, stride = 2, padding = 1)
def forward(self, x):
return self.conv(x)
class PEG(nn.Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
def forward(self, x):
return self.proj(x) + x
# transformer classes
def FeedForward(dim, mult = 4, dropout = 0.):
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * mult, 1),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(dim * mult, dim, 1)
)
class Attention(nn.Module):
def __init__(
self,
dim,
heads = 4,
dim_head = 32,
dropout = 0.
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
def forward(self, x, rel_pos_bias = None):
h = self.heads
# prenorm
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
# split heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
q = q * self.scale
sim = einsum('b h i d, b h j d -> b h i j', q, k)
# add relative positional bias for local tokens
if exists(rel_pos_bias):
sim = sim + rel_pos_bias
attn = sim.softmax(dim = -1)
# merge heads
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class R2LTransformer(nn.Module):
def __init__(
self,
dim,
*,
window_size,
depth = 4,
heads = 4,
dim_head = 32,
attn_dropout = 0.,
ff_dropout = 0.,
):
super().__init__()
self.layers = nn.ModuleList([])
self.window_size = window_size
rel_positions = 2 * window_size - 1
self.local_rel_pos_bias = nn.Embedding(rel_positions ** 2, heads)
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = attn_dropout),
FeedForward(dim, dropout = ff_dropout)
]))
def forward(self, local_tokens, region_tokens):
device = local_tokens.device
lh, lw = local_tokens.shape[-2:]
rh, rw = region_tokens.shape[-2:]
window_size_h, window_size_w = lh // rh, lw // rw
local_tokens = rearrange(local_tokens, 'b c h w -> b (h w) c')
region_tokens = rearrange(region_tokens, 'b c h w -> b (h w) c')
# calculate local relative positional bias
h_range = torch.arange(window_size_h, device = device)
w_range = torch.arange(window_size_w, device = device)
grid_x, grid_y = torch.meshgrid(h_range, w_range)
grid = torch.stack((grid_x, grid_y))
grid = rearrange(grid, 'c h w -> c (h w)')
grid = (grid[:, :, None] - grid[:, None, :]) + (self.window_size - 1)
bias_indices = (grid * torch.tensor([1, self.window_size * 2 - 1], device = device)[:, None, None]).sum(dim = 0)
rel_pos_bias = self.local_rel_pos_bias(bias_indices)
rel_pos_bias = rearrange(rel_pos_bias, 'i j h -> () h i j')
rel_pos_bias = F.pad(rel_pos_bias, (1, 0, 1, 0), value = 0)
# go through r2l transformer layers
for attn, ff in self.layers:
region_tokens = attn(region_tokens) + region_tokens
# concat region tokens to local tokens
local_tokens = rearrange(local_tokens, 'b (h w) d -> b h w d', h = lh)
local_tokens = rearrange(local_tokens, 'b (h p1) (w p2) d -> (b h w) (p1 p2) d', p1 = window_size_h, p2 = window_size_w)
region_tokens = rearrange(region_tokens, 'b n d -> (b n) () d')
# do self attention on local tokens, along with its regional token
region_and_local_tokens = torch.cat((region_tokens, local_tokens), dim = 1)
region_and_local_tokens = attn(region_and_local_tokens, rel_pos_bias = rel_pos_bias) + region_and_local_tokens
# feedforward
region_and_local_tokens = ff(region_and_local_tokens) + region_and_local_tokens
# split back local and regional tokens
region_tokens, local_tokens = region_and_local_tokens[:, :1], region_and_local_tokens[:, 1:]
local_tokens = rearrange(local_tokens, '(b h w) (p1 p2) d -> b (h p1 w p2) d', h = lh // window_size_h, w = lw // window_size_w, p1 = window_size_h)
region_tokens = rearrange(region_tokens, '(b n) () d -> b n d', n = rh * rw)
local_tokens = rearrange(local_tokens, 'b (h w) c -> b c h w', h = lh, w = lw)
region_tokens = rearrange(region_tokens, 'b (h w) c -> b c h w', h = rh, w = rw)
return local_tokens, region_tokens
# classes
class RegionViT(nn.Module):
def __init__(
self,
*,
dim = (64, 128, 256, 512),
depth = (2, 2, 8, 2),
window_size = 7,
num_classes = 1000,
tokenize_local_3_conv = False,
local_patch_size = 4,
use_peg = False,
attn_dropout = 0.,
ff_dropout = 0.,
channels = 3,
):
super().__init__()
dim = cast_tuple(dim, 4)
depth = cast_tuple(depth, 4)
assert len(dim) == 4, 'dim needs to be a single value or a tuple of length 4'
assert len(depth) == 4, 'depth needs to be a single value or a tuple of length 4'
self.local_patch_size = local_patch_size
region_patch_size = local_patch_size * window_size
self.region_patch_size = local_patch_size * window_size
init_dim, *_, last_dim = dim
# local and region encoders
if tokenize_local_3_conv:
self.local_encoder = nn.Sequential(
nn.Conv2d(3, init_dim, 3, 2, 1),
nn.LayerNorm(init_dim),
nn.GELU(),
nn.Conv2d(init_dim, init_dim, 3, 2, 1),
nn.LayerNorm(init_dim),
nn.GELU(),
nn.Conv2d(init_dim, init_dim, 3, 1, 1)
)
else:
self.local_encoder = nn.Conv2d(3, init_dim, 8, 4, 3)
self.region_encoder = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (c p1 p2) h w', p1 = region_patch_size, p2 = region_patch_size),
nn.Conv2d((region_patch_size ** 2) * channels, init_dim, 1)
)
# layers
current_dim = init_dim
self.layers = nn.ModuleList([])
for ind, dim, num_layers in zip(range(4), dim, depth):
not_first = ind != 0
need_downsample = not_first
need_peg = not_first and use_peg
self.layers.append(nn.ModuleList([
Downsample(current_dim, dim) if need_downsample else nn.Identity(),
PEG(dim) if need_peg else nn.Identity(),
R2LTransformer(dim, depth = num_layers, window_size = window_size, attn_dropout = attn_dropout, ff_dropout = ff_dropout)
]))
current_dim = dim
# final logits
self.to_logits = nn.Sequential(
Reduce('b c h w -> b c', 'mean'),
nn.LayerNorm(last_dim),
nn.Linear(last_dim, num_classes)
)
def forward(self, x):
*_, h, w = x.shape
assert divisible_by(h, self.region_patch_size) and divisible_by(w, self.region_patch_size), 'height and width must be divisible by region patch size'
assert divisible_by(h, self.local_patch_size) and divisible_by(w, self.local_patch_size), 'height and width must be divisible by local patch size'
local_tokens = self.local_encoder(x)
region_tokens = self.region_encoder(x)
for down, peg, transformer in self.layers:
local_tokens, region_tokens = down(local_tokens), down(region_tokens)
local_tokens = peg(local_tokens)
local_tokens, region_tokens = transformer(local_tokens, region_tokens)
return self.to_logits(region_tokens)

View File

@@ -19,7 +19,7 @@ class AxialRotaryEmbedding(nn.Module):
def __init__(self, dim, max_freq = 10):
super().__init__()
self.dim = dim
scales = torch.logspace(0., log(max_freq / 2) / log(2), self.dim // 4, base = 2)
scales = torch.linspace(1., max_freq / 2, self.dim // 4)
self.register_buffer('scales', scales)
def forward(self, x):
@@ -154,10 +154,10 @@ class Attention(nn.Module):
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, image_size, dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True):
super().__init__()
self.layers = nn.ModuleList([])
self.pos_emb = AxialRotaryEmbedding(dim_head)
self.pos_emb = AxialRotaryEmbedding(dim_head, max_freq = image_size)
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, use_rotary = use_rotary, use_ds_conv = use_ds_conv)),
@@ -187,7 +187,7 @@ class RvT(nn.Module):
)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, use_rotary, use_ds_conv, use_glu)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, image_size, dropout, use_rotary, use_ds_conv, use_glu)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),

84
vit_pytorch/simmim.py Normal file
View File

@@ -0,0 +1,84 @@
import torch
from torch import nn
import torch.nn.functional as F
from einops import repeat
class SimMIM(nn.Module):
def __init__(
self,
*,
encoder,
masking_ratio = 0.5
):
super().__init__()
assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1'
self.masking_ratio = masking_ratio
# extract some hyperparameters and functions from encoder (vision transformer to be trained)
self.encoder = encoder
num_patches, encoder_dim = encoder.pos_embedding.shape[-2:]
self.to_patch, self.patch_to_emb = encoder.to_patch_embedding[:2]
pixel_values_per_patch = self.patch_to_emb.weight.shape[-1]
# simple linear head
self.mask_token = nn.Parameter(torch.randn(encoder_dim))
self.to_pixels = nn.Linear(encoder_dim, pixel_values_per_patch)
def forward(self, img):
device = img.device
# get patches
patches = self.to_patch(img)
batch, num_patches, *_ = patches.shape
# for indexing purposes
batch_range = torch.arange(batch, device = device)[:, None]
# get positions
pos_emb = self.encoder.pos_embedding[:, 1:(num_patches + 1)]
# patch to encoder tokens and add positions
tokens = self.patch_to_emb(patches)
tokens = tokens + pos_emb
# prepare mask tokens
mask_tokens = repeat(self.mask_token, 'd -> b n d', b = batch, n = num_patches)
mask_tokens = mask_tokens + pos_emb
# calculate of patches needed to be masked, and get positions (indices) to be masked
num_masked = int(self.masking_ratio * num_patches)
masked_indices = torch.rand(batch, num_patches, device = device).topk(k = num_masked, dim = -1).indices
masked_bool_mask = torch.zeros((batch, num_patches), device = device).scatter_(-1, masked_indices, 1).bool()
# mask tokens
tokens = torch.where(masked_bool_mask[..., None], mask_tokens, tokens)
# attend with vision transformer
encoded = self.encoder.transformer(tokens)
# get the masked tokens
encoded_mask_tokens = encoded[batch_range, masked_indices]
# small linear projection for predicted pixel values
pred_pixel_values = self.to_pixels(encoded_mask_tokens)
# get the masked patches for the final reconstruction loss
masked_patches = patches[batch_range, masked_indices]
# calculate reconstruction loss
recon_loss = F.l1_loss(pred_pixel_values, masked_patches) / num_masked
return recon_loss

View File

@@ -35,13 +35,14 @@ class T2TViT(nn.Module):
for i, (kernel_size, stride) in enumerate(t2t_layers):
layer_dim *= kernel_size ** 2
is_first = i == 0
is_last = i == (len(t2t_layers) - 1)
output_image_size = conv_output_size(output_image_size, kernel_size, stride, stride // 2)
layers.extend([
RearrangeImage() if not is_first else nn.Identity(),
nn.Unfold(kernel_size = kernel_size, stride = stride, padding = stride // 2),
Rearrange('b c n -> b n c'),
Transformer(dim = layer_dim, heads = 1, depth = 1, dim_head = layer_dim, mlp_dim = layer_dim, dropout = dropout),
Transformer(dim = layer_dim, heads = 1, depth = 1, dim_head = layer_dim, mlp_dim = layer_dim, dropout = dropout) if not is_last else nn.Identity(),
])
layers.append(nn.Linear(layer_dim, dim))
@@ -71,7 +72,7 @@ class T2TViT(nn.Module):
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x += self.pos_embedding[:, :n+1]
x = self.dropout(x)
x = self.transformer(x)

View File

@@ -38,9 +38,9 @@ class LayerNorm(nn.Module):
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):

View File

@@ -1,6 +1,5 @@
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
@@ -51,15 +50,14 @@ class Attention(nn.Module):
) if project_out else nn.Identity()
def forward(self, x):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)

View File

@@ -0,0 +1,142 @@
from math import sqrt
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class LSA(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.temperature = nn.Parameter(torch.log(torch.tensor(dim_head ** -0.5)))
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.temperature.exp()
mask = torch.eye(dots.shape[-1], device = dots.device, dtype = torch.bool)
mask_value = -torch.finfo(dots.dtype).max
dots = dots.masked_fill(mask, mask_value)
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, LSA(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class SPT(nn.Module):
def __init__(self, *, dim, patch_size, channels = 3):
super().__init__()
patch_dim = patch_size * patch_size * 5 * channels
self.to_patch_tokens = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim)
)
def forward(self, x):
shifts = ((1, -1, 0, 0), (-1, 1, 0, 0), (0, 0, 1, -1), (0, 0, -1, 1))
shifted_x = list(map(lambda shift: F.pad(x, shift), shifts))
x_with_shifts = torch.cat((x, *shifted_x), dim = 1)
return self.to_patch_tokens(x_with_shifts)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = SPT(dim = dim, patch_size = patch_size, channels = channels)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

View File

@@ -0,0 +1,144 @@
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
# helpers
def exists(val):
return val is not None
def default(val ,d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# patch merger class
class PatchMerger(nn.Module):
def __init__(self, dim, num_tokens_out):
super().__init__()
self.scale = dim ** -0.5
self.norm = nn.LayerNorm(dim)
self.queries = nn.Parameter(torch.randn(num_tokens_out, dim))
def forward(self, x):
x = self.norm(x)
sim = torch.matmul(self.queries, x.transpose(-1, -2)) * self.scale
attn = sim.softmax(dim = -1)
return torch.matmul(attn, x)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., patch_merge_layer = None, patch_merge_num_tokens = 8):
super().__init__()
self.layers = nn.ModuleList([])
self.patch_merge_layer_index = default(patch_merge_layer, depth // 2) - 1 # default to mid-way through transformer, as shown in paper
self.patch_merger = PatchMerger(dim = dim, num_tokens_out = patch_merge_num_tokens)
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for index, (attn, ff) in enumerate(self.layers):
x = attn(x) + x
x = ff(x) + x
if index == self.patch_merge_layer_index:
x = self.patch_merger(x)
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, patch_merge_layer = None, patch_merge_num_tokens = 8, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, patch_merge_layer, patch_merge_num_tokens)
self.mlp_head = nn.Sequential(
Reduce('b n d -> b d', 'mean'),
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
x += self.pos_embedding[:, :n]
x = self.dropout(x)
x = self.transformer(x)
return self.mlp_head(x)