Compare commits

...

16 Commits

Author SHA1 Message Date
Phil Wang
f196d1ec5b move freqs in RvT to linspace 2021-10-05 09:23:44 -07:00
Phil Wang
529044c9b3 Merge pull request #153 from developer0hye/fix-example
fix transforms for val an test process in example code
2021-09-02 06:57:16 -07:00
yhkwon-DT01
c30655f3bc fix transforms for val an test process 2021-09-02 17:30:18 +09:00
Phil Wang
d2d6de01d3 0.20.7 2021-08-30 08:14:43 -07:00
Phil Wang
b9eadaef60 Merge pull request #151 from developer0hye/patch-1
Cleanup Attention Class & matmul based implementation for TensorRT conversion
2021-08-30 08:14:11 -07:00
Yonghye Kwon
24ac8350bf remove unused package 2021-08-30 18:25:03 +09:00
Yonghye Kwon
ca3cef9de0 Cleanup Attention Class 2021-08-30 18:05:16 +09:00
Phil Wang
6e1be11517 0.20.6 2021-08-21 09:03:54 -07:00
Phil Wang
73ed562ce4 Merge pull request #147 from developer0hye/patch-4
Make T2T process any scale image
2021-08-21 09:03:42 -07:00
Phil Wang
ff863175a6 Merge pull request #146 from developer0hye/patch-1
Make Pit process image with width and height less than the image_size
2021-08-21 09:03:31 -07:00
Yonghye Kwon
ca0bdca192 Make model process any scale image
Related to #145
2021-08-21 22:35:26 +09:00
Yonghye Kwon
1c70271778 Support image with width and height less than the image_size
Related to #145
2021-08-21 22:25:46 +09:00
Phil Wang
d7d3febfe3 Merge pull request #144 from developer0hye/patch-1
Remove unused package
2021-08-20 10:14:02 -07:00
Yonghye Kwon
946815164a Remove unused package 2021-08-20 13:44:57 +09:00
Phil Wang
aeed3381c1 use hardswish for levit 2021-08-19 08:22:55 -07:00
Phil Wang
3f754956fb remove last transformer layer in t2t 2021-08-14 08:06:23 -07:00
7 changed files with 19 additions and 22 deletions

View File

@@ -364,9 +364,8 @@
"\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.Resize((224, 224)),\n",
" transforms.RandomResizedCrop(224),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" ]\n",
")\n",
@@ -374,9 +373,8 @@
"\n",
"test_transforms = transforms.Compose(\n",
" [\n",
" transforms.Resize((224, 224)),\n",
" transforms.RandomResizedCrop(224),\n",
" transforms.RandomHorizontalFlip(),\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" ]\n",
")\n"
@@ -6250,4 +6248,4 @@
},
"nbformat": 4,
"nbformat_minor": 1
}
}

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.20.3',
version = '0.20.8',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',

View File

@@ -29,7 +29,7 @@ class FeedForward(nn.Module):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim, dim * mult, 1),
nn.GELU(),
nn.Hardswish(),
nn.Dropout(dropout),
nn.Conv2d(dim * mult, dim, 1),
nn.Dropout(dropout)

View File

@@ -175,7 +175,7 @@ class PiT(nn.Module):
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x += self.pos_embedding[:, :n+1]
x = self.dropout(x)
x = self.layers(x)

View File

@@ -19,7 +19,7 @@ class AxialRotaryEmbedding(nn.Module):
def __init__(self, dim, max_freq = 10):
super().__init__()
self.dim = dim
scales = torch.logspace(0., log(max_freq / 2) / log(2), self.dim // 4, base = 2)
scales = torch.linspace(1., max_freq / 2, self.dim // 4)
self.register_buffer('scales', scales)
def forward(self, x):
@@ -154,10 +154,10 @@ class Attention(nn.Module):
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, image_size, dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True):
super().__init__()
self.layers = nn.ModuleList([])
self.pos_emb = AxialRotaryEmbedding(dim_head)
self.pos_emb = AxialRotaryEmbedding(dim_head, max_freq = image_size)
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, use_rotary = use_rotary, use_ds_conv = use_ds_conv)),
@@ -187,7 +187,7 @@ class RvT(nn.Module):
)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, use_rotary, use_ds_conv, use_glu)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, image_size, dropout, use_rotary, use_ds_conv, use_glu)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),

View File

@@ -35,13 +35,14 @@ class T2TViT(nn.Module):
for i, (kernel_size, stride) in enumerate(t2t_layers):
layer_dim *= kernel_size ** 2
is_first = i == 0
is_last = i == (len(t2t_layers) - 1)
output_image_size = conv_output_size(output_image_size, kernel_size, stride, stride // 2)
layers.extend([
RearrangeImage() if not is_first else nn.Identity(),
nn.Unfold(kernel_size = kernel_size, stride = stride, padding = stride // 2),
Rearrange('b c n -> b n c'),
Transformer(dim = layer_dim, heads = 1, depth = 1, dim_head = layer_dim, mlp_dim = layer_dim, dropout = dropout),
Transformer(dim = layer_dim, heads = 1, depth = 1, dim_head = layer_dim, mlp_dim = layer_dim, dropout = dropout) if not is_last else nn.Identity(),
])
layers.append(nn.Linear(layer_dim, dim))
@@ -71,7 +72,7 @@ class T2TViT(nn.Module):
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x += self.pos_embedding[:, :n+1]
x = self.dropout(x)
x = self.transformer(x)

View File

@@ -1,6 +1,5 @@
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
@@ -51,15 +50,14 @@ class Attention(nn.Module):
) if project_out else nn.Identity()
def forward(self, x):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)