Compare commits

...

58 Commits

Author SHA1 Message Date
Phil Wang
29fbf0aff4 begin extending some of the architectures over to 3d, starting with basic ViT 2022-10-16 15:31:59 -07:00
Phil Wang
4b8f5bc900 add link to Flax translation by @conceptofmind 2022-07-27 08:58:18 -07:00
Phil Wang
f86e052c05 offer way for extractor to return latents without detaching them 2022-07-16 16:22:40 -07:00
Phil Wang
2fa2b62def slightly more clear of einops rearrange for cls token, for https://github.com/lucidrains/vit-pytorch/issues/224 2022-06-30 08:11:17 -07:00
Phil Wang
9f87d1c43b follow @arquolo feedback and advice for MaxViT 2022-06-29 08:53:09 -07:00
Phil Wang
2c6dd7010a fix hidden dimension in MaxViT thanks to @arquolo 2022-06-24 23:28:35 -07:00
Phil Wang
6460119f65 be able to accept a reference to a layer within the model for forward hooking and extracting the embedding output, for regionvit to work with extractor 2022-06-19 08:22:18 -07:00
Phil Wang
4e62e5f05e make extractor flexible for layers that output multiple tensors, show CrossViT example 2022-06-19 08:11:41 -07:00
Phil Wang
b3e90a2652 add simple vit, from https://arxiv.org/abs/2205.01580 2022-05-03 20:24:14 -07:00
Phil Wang
4ef72fc4dc add EsViT, by popular request, an alternative to Dino that is compatible with efficient ViTs with accounting for regional self-supervised loss 2022-05-03 10:29:29 -07:00
Zhengzhong Tu
c2aab05ebf fix bibtex typo (#212) 2022-04-06 22:15:05 -07:00
Phil Wang
81661e3966 fix mbconv residual block 2022-04-06 16:43:06 -07:00
Phil Wang
13f8e123bb fix maxvit - need feedforwards after attention 2022-04-06 16:34:40 -07:00
Phil Wang
2d4089c88e link to maxvit in readme 2022-04-06 16:24:12 -07:00
Phil Wang
c7bb5fc43f maxvit intent to build (#211)
complete hybrid mbconv + block / grid efficient self attention MaxViT
2022-04-06 16:12:17 -07:00
Phil Wang
946b19be64 sponsor button 2022-04-06 14:12:11 -07:00
Phil Wang
d93cd84ccd let windowed tokens exchange information across heads a la talking heads prior to pointwise attention in sep-vit 2022-03-31 15:22:24 -07:00
Phil Wang
5d4c798949 cleanup sepvit 2022-03-31 14:35:11 -07:00
Phil Wang
d65a742efe intent to build (#210)
complete SepViT, from bytedance AI labs
2022-03-31 14:30:23 -07:00
Phil Wang
8c54e01492 do not layernorm on last transformer block for scalable vit, as there is already one in mlp head 2022-03-31 13:25:21 -07:00
Phil Wang
df656fe7c7 complete learnable memory ViT, for efficient fine-tuning and potentially plays into continual learning 2022-03-31 09:51:12 -07:00
Phil Wang
4e6a42a0ca correct need for post-attention dropout 2022-03-30 10:50:57 -07:00
Phil Wang
6d7298d8ad link to tensorflow2 translation by @taki0112 2022-03-28 09:05:34 -07:00
Phil Wang
9cd56ff29b CCT allow for rectangular images 2022-03-26 14:02:49 -07:00
Phil Wang
2aae406ce8 add proposed parallel vit from facebook ai for exploration purposes 2022-03-23 10:42:35 -07:00
Phil Wang
c2b2db2a54 fix window size of none for scalable vit for rectangular images 2022-03-22 17:37:59 -07:00
Phil Wang
719048d1bd some better defaults for scalable vit 2022-03-22 17:19:58 -07:00
Phil Wang
d27721a85a add scalable vit, from bytedance AI 2022-03-22 17:02:47 -07:00
Phil Wang
cb22cbbd19 update to einops 0.4, which is torchscript jit friendly 2022-03-22 13:58:00 -07:00
Phil Wang
6db20debb4 add patch merger 2022-03-01 16:50:17 -08:00
Phil Wang
1bae5d3cc5 allow for rectangular images for efficient adapter 2022-01-31 08:55:31 -08:00
Phil Wang
25b384297d return None from extractor if no attention layers 2022-01-28 17:49:58 -08:00
Phil Wang
64a07f50e6 epsilon should be inside square root 2022-01-24 17:24:41 -08:00
Phil Wang
126d204ff2 fix block repeats in readme example for Nest 2022-01-22 21:32:53 -08:00
Phil Wang
c1528acd46 fix feature maps in Nest, thanks to @MarkYangjiayi 2022-01-22 13:17:30 -08:00
Phil Wang
1cc0f182a6 decoder positional embedding needs to be reapplied https://twitter.com/giffmana/status/1479195631587631104 2022-01-06 13:14:41 -08:00
Phil Wang
28eaba6115 0.26.2 2022-01-03 12:56:34 -08:00
Phil Wang
0082301f9e build @jrounds suggestion 2022-01-03 12:56:25 -08:00
Phil Wang
91ed738731 0.26.1 2021-12-30 19:31:26 -08:00
Phil Wang
1b58daa20a Merge pull request #186 from chinhsuanwu/mobilevit
Update MobileViT
2021-12-30 19:31:01 -08:00
chinhsuanwu
f2414b2c1b Update MobileViT 2021-12-30 05:52:23 +08:00
Phil Wang
891b92eb74 readme 2021-12-28 16:00:00 -08:00
Phil Wang
70ba532599 add ViT for small datasets https://arxiv.org/abs/2112.13492 2021-12-28 10:58:21 -08:00
Phil Wang
e52ac41955 allow extractor to only return embeddings, to ready for vision transformers to be used in x-clip 2021-12-25 12:31:21 -08:00
Phil Wang
0891885485 include tests in package for conda 2021-12-22 12:44:29 -08:00
Phil Wang
976f489230 add some tests 2021-12-22 09:13:31 -08:00
Phil Wang
2c368d1d4e add extractor wrapper 2021-12-21 11:11:39 -08:00
Phil Wang
b983bbee39 release MobileViT, from @murufeng 2021-12-21 10:22:59 -08:00
Phil Wang
86a7302ba6 Merge pull request #181 from murufeng/main
Add MobileViT
2021-12-21 09:51:56 -08:00
murufeng
89d3a04b3f Add files via upload 2021-12-21 20:48:34 +08:00
murufeng
e7075c64aa Update README.md 2021-12-21 20:44:30 +08:00
murufeng
5ea1559e4c Add files via upload 2021-12-21 20:41:01 +08:00
Phil Wang
f4b0b14094 add ATS to table of contents 2021-12-03 20:07:18 -08:00
Phil Wang
365b4d931e add adaptive token sampling paper 2021-12-03 19:52:40 -08:00
Phil Wang
79c864d796 link to community youtuber 2021-11-24 08:13:52 -08:00
Phil Wang
b45c1356a1 cleanup 2021-11-22 22:53:02 -08:00
Phil Wang
ff44d97cb0 make initial channels customizable for PiT 2021-11-22 18:08:49 -08:00
Phil Wang
d35345df6a remove wip 2021-11-22 17:43:04 -08:00
48 changed files with 3609 additions and 74 deletions

3
.github/FUNDING.yml vendored Normal file
View File

@@ -0,0 +1,3 @@
# These are supported funding model platforms
github: [lucidrains]

33
.github/workflows/python-test.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Test
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.7, 3.8, 3.9]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install pytest
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Test with pytest
run: |
python setup.py test

1
MANIFEST.in Normal file
View File

@@ -0,0 +1 @@
recursive-include tests *

728
README.md
View File

@@ -6,6 +6,7 @@
- [Install](#install)
- [Usage](#usage)
- [Parameters](#parameters)
- [Simple ViT](#simple-vit)
- [Distillation](#distillation)
- [Deep ViT](#deep-vit)
- [CaiT](#cait)
@@ -16,12 +17,24 @@
- [LeViT](#levit)
- [CvT](#cvt)
- [Twins SVT](#twins-svt)
- [CrossFormer](#crossformer)
- [RegionViT](#regionvit)
- [ScalableViT](#scalablevit)
- [SepViT](#sepvit)
- [MaxViT](#maxvit)
- [NesT](#nest)
- [MobileViT](#mobilevit)
- [Masked Autoencoder](#masked-autoencoder)
- [Simple Masked Image Modeling](#simple-masked-image-modeling)
- [Masked Patch Prediction](#masked-patch-prediction)
- [Adaptive Token Sampling](#adaptive-token-sampling)
- [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [3D Vit](#3d-vit)
- [Parallel ViT](#parallel-vit)
- [Learnable Memory ViT](#learnable-memory-vit)
- [Dino](#dino)
- [EsViT](#esvit)
- [Accessing Attention](#accessing-attention)
- [Research Ideas](#research-ideas)
* [Efficient Attention](#efficient-attention)
@@ -38,6 +51,10 @@ For a Pytorch implementation with pretrained models, please see Ross Wightman's
The official Jax repository is <a href="https://github.com/google-research/vision_transformer">here</a>.
A tensorflow2 translation also exists <a href="https://github.com/taki0112/vit-tensorflow">here</a>, created by research scientist <a href="https://github.com/taki0112">Junho Kim</a>! 🙏
<a href="https://github.com/conceptofmind/vit-flax">Flax translation</a> by <a href="https://github.com/conceptofmind">Enrico Shippole</a>!
## Install
```bash
@@ -93,6 +110,33 @@ Embedding dropout rate.
- `pool`: string, either `cls` token pooling or `mean` pooling
## Simple ViT
<a href="https://arxiv.org/abs/2205.01580">An update</a> from some of the same authors of the original paper proposes simplifications to `ViT` that allows it to train faster and better.
Among these simplifications include 2d sinusoidal positional embedding, global average pooling (no CLS token), no dropout, batch sizes of 1024 rather than 4096, and use of RandAugment and MixUp augmentations. They also show that a simple linear at the end is not significantly worse than the original MLP head
You can use it by importing the `SimpleViT` as shown below
```python
import torch
from vit_pytorch import SimpleViT
v = SimpleViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048
)
img = torch.randn(1, 3, 256, 256)
preds = v(img) # (1, 1000)
```
## Distillation
<img src="./images/distill.png" width="300px"></img>
@@ -234,6 +278,7 @@ preds = v(img) # (1, 1000)
```
## CCT
<img src="https://raw.githubusercontent.com/SHI-Labs/Compact-Transformers/main/images/model_sym.png" width="400px"></img>
<a href="https://arxiv.org/abs/2104.05704">CCT</a> proposes compact transformers
@@ -245,22 +290,25 @@ You can use this with two methods
import torch
from vit_pytorch.cct import CCT
model = CCT(
img_size=224,
embedding_dim=384,
n_conv_layers=2,
kernel_size=7,
stride=2,
padding=3,
pooling_kernel_size=3,
pooling_stride=2,
pooling_padding=1,
num_layers=14,
num_heads=6,
mlp_radio=3.,
num_classes=1000,
positional_embedding='learnable', # ['sine', 'learnable', 'none']
)
cct = CCT(
img_size = (224, 448),
embedding_dim = 384,
n_conv_layers = 2,
kernel_size = 7,
stride = 2,
padding = 3,
pooling_kernel_size = 3,
pooling_stride = 2,
pooling_padding = 1,
num_layers = 14,
num_heads = 6,
mlp_radio = 3.,
num_classes = 1000,
positional_embedding = 'learnable', # ['sine', 'learnable', 'none']
)
img = torch.randn(1, 3, 224, 448)
pred = cct(img) # (1, 1000)
```
Alternatively you can use one of several pre-defined models `[2,4,6,7,8,14,16]`
@@ -271,23 +319,23 @@ and the embedding dimension.
import torch
from vit_pytorch.cct import cct_14
model = cct_14(
img_size=224,
n_conv_layers=1,
kernel_size=7,
stride=2,
padding=3,
pooling_kernel_size=3,
pooling_stride=2,
pooling_padding=1,
num_classes=1000,
positional_embedding='learnable', # ['sine', 'learnable', 'none']
)
cct = cct_14(
img_size = 224,
n_conv_layers = 1,
kernel_size = 7,
stride = 2,
padding = 3,
pooling_kernel_size = 3,
pooling_stride = 2,
pooling_padding = 1,
num_classes = 1000,
positional_embedding = 'learnable', # ['sine', 'learnable', 'none']
)
```
<a href="https://github.com/SHI-Labs/Compact-Transformers">Official
Repository</a> includes links to pretrained model checkpoints.
## Cross ViT
<img src="./images/cross_vit.png" width="400px"></img>
@@ -493,7 +541,7 @@ img = torch.randn(1, 3, 224, 224)
pred = model(img) # (1, 1000)
```
## CrossFormer (wip)
## CrossFormer
<img src="./images/crossformer.png" width="400px"></img>
@@ -520,6 +568,98 @@ img = torch.randn(1, 3, 224, 224)
pred = model(img) # (1, 1000)
```
## ScalableViT
<img src="./images/scalable-vit-1.png" width="400px"></img>
<img src="./images/scalable-vit-2.png" width="400px"></img>
This Bytedance AI <a href="https://arxiv.org/abs/2203.10790">paper</a> proposes the Scalable Self Attention (SSA) and the Interactive Windowed Self Attention (IWSA) modules. The SSA alleviates the computation needed at earlier stages by reducing the key / value feature map by some factor (`reduction_factor`), while modulating the dimension of the queries and keys (`ssa_dim_key`). The IWSA performs self attention within local windows, similar to other vision transformer papers. However, they add a residual of the values, passed through a convolution of kernel size 3, which they named Local Interactive Module (LIM).
They make the claim in this paper that this scheme outperforms Swin Transformer, and also demonstrate competitive performance against Crossformer.
You can use it as follows (ex. ScalableViT-S)
```python
import torch
from vit_pytorch.scalable_vit import ScalableViT
model = ScalableViT(
num_classes = 1000,
dim = 64, # starting model dimension. at every stage, dimension is doubled
heads = (2, 4, 8, 16), # number of attention heads at each stage
depth = (2, 2, 20, 2), # number of transformer blocks at each stage
ssa_dim_key = (40, 40, 40, 32), # the dimension of the attention keys (and queries) for SSA. in the paper, they represented this as a scale factor on the base dimension per key (ssa_dim_key / dim_key)
reduction_factor = (8, 4, 2, 1), # downsampling of the key / values in SSA. in the paper, this was represented as (reduction_factor ** -2)
window_size = (64, 32, None, None), # window size of the IWSA at each stage. None means no windowing needed
dropout = 0.1, # attention and feedforward dropout
)
img = torch.randn(1, 3, 256, 256)
preds = model(img) # (1, 1000)
```
## SepViT
<img src="./images/sep-vit.png" width="400px"></img>
Another <a href="https://arxiv.org/abs/2203.15380">Bytedance AI paper</a>, it proposes a depthwise-pointwise self-attention layer that seems largely inspired by mobilenet's depthwise-separable convolution. The most interesting aspect is the reuse of the feature map from the depthwise self-attention stage as the values for the pointwise self-attention, as shown in the diagram above.
I have decided to include only the version of `SepViT` with this specific self-attention layer, as the grouped attention layers are not remarkable nor novel, and the authors were not clear on how they treated the window tokens for the group self-attention layer. Besides, it seems like with `DSSA` layer alone, they were able to beat Swin.
ex. SepViT-Lite
```python
import torch
from vit_pytorch.sep_vit import SepViT
v = SepViT(
num_classes = 1000,
dim = 32, # dimensions of first stage, which doubles every stage (32, 64, 128, 256) for SepViT-Lite
dim_head = 32, # attention head dimension
heads = (1, 2, 4, 8), # number of heads per stage
depth = (1, 2, 6, 2), # number of transformer blocks per stage
window_size = 7, # window size of DSS Attention block
dropout = 0.1 # dropout
)
img = torch.randn(1, 3, 224, 224)
preds = v(img) # (1, 1000)
```
## MaxViT
<img src="./images/max-vit.png" width="400px"></img>
<a href="https://arxiv.org/abs/2204.01697">This paper</a> proposes a hybrid convolutional / attention network, using MBConv from the convolution side, and then block / grid axial sparse attention.
They also claim this specific vision transformer is good for generative models (GANs).
ex. MaxViT-S
```python
import torch
from vit_pytorch.max_vit import MaxViT
v = MaxViT(
num_classes = 1000,
dim_conv_stem = 64, # dimension of the convolutional stem, would default to dimension of first layer if not specified
dim = 96, # dimension of first layer, doubles every layer
dim_head = 32, # dimension of attention heads, kept at 32 in paper
depth = (2, 2, 5, 2), # number of MaxViT blocks per stage, which consists of MBConv, block-like attention, grid-like attention
window_size = 7, # window size for block and grids
mbconv_expansion_rate = 4, # expansion rate of MBConv
mbconv_shrinkage_rate = 0.25, # shrinkage rate of squeeze-excitation in MBConv
dropout = 0.1 # dropout
)
img = torch.randn(2, 3, 224, 224)
preds = v(img) # (2, 1000)
```
## NesT
<img src="./images/nest.png" width="400px"></img>
@@ -538,7 +678,7 @@ nest = NesT(
dim = 96,
heads = 3,
num_hierarchies = 3, # number of hierarchies
block_repeats = (8, 4, 1), # the number of transformer blocks at each heirarchy, starting from the bottom
block_repeats = (2, 2, 8), # the number of transformer blocks at each heirarchy, starting from the bottom
num_classes = 1000
)
@@ -547,6 +687,31 @@ img = torch.randn(1, 3, 224, 224)
pred = nest(img) # (1, 1000)
```
## MobileViT
<img src="./images/mbvit.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2110.02178">paper</a> introduce MobileViT, a light-weight and general purpose vision transformer for mobile devices. MobileViT presents a different
perspective for the global processing of information with transformers.
You can use it with the following code (ex. mobilevit_xs)
```python
import torch
from vit_pytorch.mobile_vit import MobileViT
mbvit_xs = MobileViT(
image_size = (256, 256),
dims = [96, 120, 144],
channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384],
num_classes = 1000
)
img = torch.randn(1, 3, 256, 256)
pred = mbvit_xs(img) # (1, 1000)
```
## Simple Masked Image Modeling
<img src="./images/simmim.png" width="400px"/>
@@ -595,6 +760,8 @@ A new <a href="https://arxiv.org/abs/2111.06377">Kaiming He paper</a> proposes a
<a href="https://www.youtube.com/watch?v=LKixq2S2Pz8">DeepReader quick paper review</a>
<a href="https://www.youtube.com/watch?v=Dp6iICL2dVI">AI Coffeebreak with Letitia</a>
You can use it with the following code
```python
@@ -676,6 +843,248 @@ for _ in range(100):
torch.save(model.state_dict(), './pretrained-net.pt')
```
## Adaptive Token Sampling
<img src="./images/ats.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2111.15667">paper</a> proposes to use the CLS attention scores, re-weighed by the norms of the value heads, as means to discard unimportant tokens at different layers.
```python
import torch
from vit_pytorch.ats_vit import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
max_tokens_per_depth = (256, 128, 64, 32, 16, 8), # a tuple that denotes the maximum number of tokens that any given layer should have. if the layer has greater than this amount, it will undergo adaptive token sampling
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (4, 1000)
# you can also get a list of the final sampled patch ids
# a value of -1 denotes padding
preds, token_ids = v(img, return_sampled_token_ids = True) # (4, 1000), (4, <=8)
```
## Patch Merger
<img src="./images/patch_merger.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2202.12015">paper</a> proposes a simple module (Patch Merger) for reducing the number of tokens at any layer of a vision transformer without sacrificing performance.
```python
import torch
from vit_pytorch.vit_with_patch_merger import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 12,
heads = 8,
patch_merge_layer = 6, # at which transformer layer to do patch merging
patch_merge_num_tokens = 8, # the output number of tokens from the patch merge
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (4, 1000)
```
One can also use the `PatchMerger` module by itself
```python
import torch
from vit_pytorch.vit_with_patch_merger import PatchMerger
merger = PatchMerger(
dim = 1024,
num_tokens_out = 8 # output number of tokens
)
features = torch.randn(4, 256, 1024) # (batch, num tokens, dimension)
out = merger(features) # (4, 8, 1024)
```
## Vision Transformer for Small Datasets
<img src="./images/vit_for_small_datasets.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2112.13492">paper</a> proposes a new image to patch function that incorporates shifts of the image, before normalizing and dividing the image into patches. I have found shifting to be extremely helpful in some other transformers work, so decided to include this for further explorations. It also includes the `LSA` with the learned temperature and masking out of a token's attention to itself.
You can use as follows:
```python
import torch
from vit_pytorch.vit_for_small_dataset import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (1, 1000)
```
You can also use the `SPT` from this paper as a standalone module
```python
import torch
from vit_pytorch.vit_for_small_dataset import SPT
spt = SPT(
dim = 1024,
patch_size = 16,
channels = 3
)
img = torch.randn(4, 3, 256, 256)
tokens = spt(img) # (4, 256, 1024)
```
## 3D ViT
By popular request, I will start extending a few of the architectures in this repository to 3D ViTs, for use with video, medical imaging, etc.
You will need to pass in two additional hyperparameters: (1) the number of frames `frames` and (2) patch size along the frame dimension `frame_patch_size`
For starters, with the most basic ViT
```python
import torch
from vit_pytorch.vit_3d import ViT
v = ViT(
image_size = 128, # image size
frames = 16, # number of frames
image_patch_size = 16, # image patch size
frame_patch_size = 2, # frame patch size
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, width)
preds = v(video) # (4, 1000)
```
## Parallel ViT
<img src="./images/parallel-vit.png" width="350px"></img>
This <a href="https://arxiv.org/abs/2203.09795">paper</a> propose parallelizing multiple attention and feedforward blocks per layer (2 blocks), claiming that it is easier to train without loss of performance.
You can try this variant as follows
```python
import torch
from vit_pytorch.parallel_vit import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
num_parallel_branches = 2, # in paper, they claimed 2 was optimal
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (4, 1000)
```
## Learnable Memory ViT
<img src="./images/learnable-memory-vit.png" width="350px"></img>
This <a href="https://arxiv.org/abs/2203.15243">paper</a> shows that adding learnable memory tokens at each layer of a vision transformer can greatly enhance fine-tuning results (in addition to learnable task specific CLS token and adapter head).
You can use this with a specially modified `ViT` as follows
```python
import torch
from vit_pytorch.learnable_memory_vit import ViT, Adapter
# normal base ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
logits = v(img) # (4, 1000)
# do your usual training with ViT
# ...
# then, to finetune, just pass the ViT into the Adapter class
# you can do this for multiple Adapters, as shown below
adapter1 = Adapter(
vit = v,
num_classes = 2, # number of output classes for this specific task
num_memories_per_layer = 5 # number of learnable memories per layer, 10 was sufficient in paper
)
logits1 = adapter1(img) # (4, 2) - predict 2 classes off frozen ViT backbone with learnable memories and task specific head
# yet another task to finetune on, this time with 4 classes
adapter2 = Adapter(
vit = v,
num_classes = 4,
num_memories_per_layer = 10
)
logits2 = adapter2(img) # (4, 4) - predict 4 classes off frozen ViT backbone with learnable memories and task specific head
```
## Dino
<img src="./images/dino.png" width="350px"></img>
@@ -730,6 +1139,80 @@ for _ in range(100):
torch.save(model.state_dict(), './pretrained-net.pt')
```
## EsViT
<img src="./images/esvit.png" width="350px"></img>
<a href="https://arxiv.org/abs/2106.09785">`EsViT`</a> is a variant of Dino (from above) re-engineered to support efficient `ViT`s with patch merging / downsampling by taking into an account an extra regional loss between the augmented views. To quote the abstract, it `outperforms its supervised counterpart on 17 out of 18 datasets` at 3 times higher throughput.
Even though it is named as though it were a new `ViT` variant, it actually is just a strategy for training any multistage `ViT` (in the paper, they focused on Swin). The example below will show how to use it with `CvT`. You'll need to set the `hidden_layer` to the name of the layer within your efficient ViT that outputs the non-average pooled visual representations, just before the global pooling and projection to logits.
```python
import torch
from vit_pytorch.cvt import CvT
from vit_pytorch.es_vit import EsViTTrainer
cvt = CvT(
num_classes = 1000,
s1_emb_dim = 64,
s1_emb_kernel = 7,
s1_emb_stride = 4,
s1_proj_kernel = 3,
s1_kv_proj_stride = 2,
s1_heads = 1,
s1_depth = 1,
s1_mlp_mult = 4,
s2_emb_dim = 192,
s2_emb_kernel = 3,
s2_emb_stride = 2,
s2_proj_kernel = 3,
s2_kv_proj_stride = 2,
s2_heads = 3,
s2_depth = 2,
s2_mlp_mult = 4,
s3_emb_dim = 384,
s3_emb_kernel = 3,
s3_emb_stride = 2,
s3_proj_kernel = 3,
s3_kv_proj_stride = 2,
s3_heads = 4,
s3_depth = 10,
s3_mlp_mult = 4,
dropout = 0.
)
learner = EsViTTrainer(
cvt,
image_size = 256,
hidden_layer = 'layers', # hidden layer name or index, from which to extract the embedding
projection_hidden_size = 256, # projector network hidden dimension
projection_layers = 4, # number of layers in projection network
num_classes_K = 65336, # output logits dimensions (referenced as K in paper)
student_temp = 0.9, # student temperature
teacher_temp = 0.04, # teacher temperature, needs to be annealed from 0.04 to 0.07 over 30 epochs
local_upper_crop_scale = 0.4, # upper bound for local crop - 0.4 was recommended in the paper
global_lower_crop_scale = 0.5, # lower bound for global crop - 0.5 was recommended in the paper
moving_average_decay = 0.9, # moving average of encoder - paper showed anywhere from 0.9 to 0.999 was ok
center_moving_average_decay = 0.9, # moving average of teacher centers - paper showed anywhere from 0.9 to 0.999 was ok
)
opt = torch.optim.AdamW(learner.parameters(), lr = 3e-4)
def sample_unlabelled_images():
return torch.randn(8, 3, 256, 256)
for _ in range(1000):
images = sample_unlabelled_images()
loss = learner(images)
opt.zero_grad()
loss.backward()
opt.step()
learner.update_moving_average() # update moving average of teacher encoder and teacher centers
# save your improved network
torch.save(cvt.state_dict(), './pretrained-net.pt')
```
## Accessing Attention
If you would like to visualize the attention weights (post-softmax) for your research, just follow the procedure below
@@ -771,6 +1254,82 @@ to cleanup the class and the hooks once you have collected enough data
v = v.eject() # wrapper is discarded and original ViT instance is returned
```
## Accessing Embeddings
You can similarly access the embeddings with the `Extractor` wrapper
```python
import torch
from vit_pytorch.vit import ViT
v = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
# import Recorder and wrap the ViT
from vit_pytorch.extractor import Extractor
v = Extractor(v)
# forward pass now returns predictions and the attention maps
img = torch.randn(1, 3, 256, 256)
logits, embeddings = v(img)
# there is one extra token due to the CLS token
embeddings # (1, 65, 1024) - (batch x patches x model dim)
```
Or say for `CrossViT`, which has a multi-scale encoder that outputs two sets of embeddings for 'large' and 'small' scales
```python
import torch
from vit_pytorch.cross_vit import CrossViT
v = CrossViT(
image_size = 256,
num_classes = 1000,
depth = 4,
sm_dim = 192,
sm_patch_size = 16,
sm_enc_depth = 2,
sm_enc_heads = 8,
sm_enc_mlp_dim = 2048,
lg_dim = 384,
lg_patch_size = 64,
lg_enc_depth = 3,
lg_enc_heads = 8,
lg_enc_mlp_dim = 2048,
cross_attn_depth = 2,
cross_attn_heads = 8,
dropout = 0.1,
emb_dropout = 0.1
)
# wrap the CrossViT
from vit_pytorch.extractor import Extractor
v = Extractor(v, layer_name = 'multi_scale_encoder') # take embedding coming from the output of multi-scale-encoder
# forward pass now returns predictions and the attention maps
img = torch.randn(1, 3, 256, 256)
logits, embeddings = v(img)
# there is one extra token due to the CLS token
embeddings # ((1, 257, 192), (1, 17, 384)) - (batch x patches x dimension) <- large and small scales respectively
```
## Research Ideas
### Efficient Attention
@@ -1116,6 +1675,113 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@misc{fayyaz2021ats,
title = {ATS: Adaptive Token Sampling For Efficient Vision Transformers},
author = {Mohsen Fayyaz and Soroush Abbasi Kouhpayegani and Farnoush Rezaei Jafari and Eric Sommerlade and Hamid Reza Vaezi Joze and Hamed Pirsiavash and Juergen Gall},
year = {2021},
eprint = {2111.15667},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{mehta2021mobilevit,
title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer},
author = {Sachin Mehta and Mohammad Rastegari},
year = {2021},
eprint = {2110.02178},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{lee2021vision,
title = {Vision Transformer for Small-Size Datasets},
author = {Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song},
year = {2021},
eprint = {2112.13492},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{renggli2022learning,
title = {Learning to Merge Tokens in Vision Transformers},
author = {Cedric Renggli and André Susano Pinto and Neil Houlsby and Basil Mustafa and Joan Puigcerver and Carlos Riquelme},
year = {2022},
eprint = {2202.12015},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{yang2022scalablevit,
title = {ScalableViT: Rethinking the Context-oriented Generalization of Vision Transformer},
author = {Rui Yang and Hailong Ma and Jie Wu and Yansong Tang and Xuefeng Xiao and Min Zheng and Xiu Li},
year = {2022},
eprint = {2203.10790},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@inproceedings{Touvron2022ThreeTE,
title = {Three things everyone should know about Vision Transformers},
author = {Hugo Touvron and Matthieu Cord and Alaaeldin El-Nouby and Jakob Verbeek and Herv'e J'egou},
year = {2022}
}
```
```bibtex
@inproceedings{Sandler2022FinetuningIT,
title = {Fine-tuning Image Transformers using Learnable Memory},
author = {Mark Sandler and Andrey Zhmoginov and Max Vladymyrov and Andrew Jackson},
year = {2022}
}
```
```bibtex
@inproceedings{Li2022SepViTSV,
title = {SepViT: Separable Vision Transformer},
author = {Wei Li and Xing Wang and Xin Xia and Jie Wu and Xuefeng Xiao and Minghang Zheng and Shiping Wen},
year = {2022}
}
```
```bibtex
@inproceedings{Tu2022MaxViTMV,
title = {MaxViT: Multi-Axis Vision Transformer},
author = {Zhengzhong Tu and Hossein Talebi and Han Zhang and Feng Yang and Peyman Milanfar and Alan Conrad Bovik and Yinxiao Li},
year = {2022}
}
```
```bibtex
@article{Li2021EfficientSV,
title = {Efficient Self-supervised Vision Transformers for Representation Learning},
author = {Chunyuan Li and Jianwei Yang and Pengchuan Zhang and Mei Gao and Bin Xiao and Xiyang Dai and Lu Yuan and Jianfeng Gao},
journal = {ArXiv},
year = {2021},
volume = {abs/2106.09785}
}
```
```bibtex
@misc{Beyer2022BetterPlainViT
title = {Better plain ViT baselines for ImageNet-1k},
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
publisher = {arXiv},
year = {2022}
}
```
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},

BIN
images/ats.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 198 KiB

BIN
images/esvit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

BIN
images/max-vit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 133 KiB

BIN
images/mbvit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 206 KiB

BIN
images/parallel-vit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
images/patch_merger.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

BIN
images/scalable-vit-1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

BIN
images/scalable-vit-2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

BIN
images/sep-vit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

View File

@@ -3,9 +3,10 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.24.1',
version = '0.36.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description_content_type = 'text/markdown',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/vit-pytorch',
@@ -15,10 +16,16 @@ setup(
'image recognition'
],
install_requires=[
'einops>=0.3',
'torch>=1.6',
'einops>=0.4.1',
'torch>=1.10',
'torchvision'
],
setup_requires=[
'pytest-runner',
],
tests_require=[
'pytest'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',

20
tests/test.py Normal file
View File

@@ -0,0 +1,20 @@
import torch
from vit_pytorch import ViT
def test():
v = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)
preds = v(img)
assert preds.shape == (1, 1000), 'correct logits outputted'

View File

@@ -1,3 +1,5 @@
from vit_pytorch.vit import ViT
from vit_pytorch.simple_vit import SimpleViT
from vit_pytorch.mae import MAE
from vit_pytorch.dino import Dino

265
vit_pytorch/ats_vit.py Normal file
View File

@@ -0,0 +1,265 @@
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# adaptive token sampling functions and classes
def log(t, eps = 1e-6):
return torch.log(t + eps)
def sample_gumbel(shape, device, dtype, eps = 1e-6):
u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1)
return -log(-log(u, eps), eps)
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
class AdaptiveTokenSampling(nn.Module):
def __init__(self, output_num_tokens, eps = 1e-6):
super().__init__()
self.eps = eps
self.output_num_tokens = output_num_tokens
def forward(self, attn, value, mask):
heads, output_num_tokens, eps, device, dtype = attn.shape[1], self.output_num_tokens, self.eps, attn.device, attn.dtype
# first get the attention values for CLS token to all other tokens
cls_attn = attn[..., 0, 1:]
# calculate the norms of the values, for weighting the scores, as described in the paper
value_norms = value[..., 1:, :].norm(dim = -1)
# weigh the attention scores by the norm of the values, sum across all heads
cls_attn = einsum('b h n, b h n -> b n', cls_attn, value_norms)
# normalize to 1
normed_cls_attn = cls_attn / (cls_attn.sum(dim = -1, keepdim = True) + eps)
# instead of using inverse transform sampling, going to invert the softmax and use gumbel-max sampling instead
pseudo_logits = log(normed_cls_attn)
# mask out pseudo logits for gumbel-max sampling
mask_without_cls = mask[:, 1:]
mask_value = -torch.finfo(attn.dtype).max / 2
pseudo_logits = pseudo_logits.masked_fill(~mask_without_cls, mask_value)
# expand k times, k being the adaptive sampling number
pseudo_logits = repeat(pseudo_logits, 'b n -> b k n', k = output_num_tokens)
pseudo_logits = pseudo_logits + sample_gumbel(pseudo_logits.shape, device = device, dtype = dtype)
# gumble-max and add one to reserve 0 for padding / mask
sampled_token_ids = pseudo_logits.argmax(dim = -1) + 1
# calculate unique using torch.unique and then pad the sequence from the right
unique_sampled_token_ids_list = [torch.unique(t, sorted = True) for t in torch.unbind(sampled_token_ids)]
unique_sampled_token_ids = pad_sequence(unique_sampled_token_ids_list, batch_first = True)
# calculate the new mask, based on the padding
new_mask = unique_sampled_token_ids != 0
# CLS token never gets masked out (gets a value of True)
new_mask = F.pad(new_mask, (1, 0), value = True)
# prepend a 0 token id to keep the CLS attention scores
unique_sampled_token_ids = F.pad(unique_sampled_token_ids, (1, 0), value = 0)
expanded_unique_sampled_token_ids = repeat(unique_sampled_token_ids, 'b n -> b h n', h = heads)
# gather the new attention scores
new_attn = batched_index_select(attn, expanded_unique_sampled_token_ids, dim = 2)
# return the sampled attention scores, new mask (denoting padding), as well as the sampled token indices (for the residual)
return new_attn, new_mask, unique_sampled_token_ids
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., output_num_tokens = None):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.output_num_tokens = output_num_tokens
self.ats = AdaptiveTokenSampling(output_num_tokens) if exists(output_num_tokens) else None
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, *, mask):
num_tokens = x.shape[1]
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
if exists(mask):
dots_mask = rearrange(mask, 'b i -> b 1 i 1') * rearrange(mask, 'b j -> b 1 1 j')
mask_value = -torch.finfo(dots.dtype).max
dots = dots.masked_fill(~dots_mask, mask_value)
attn = self.attend(dots)
attn = self.dropout(attn)
sampled_token_ids = None
# if adaptive token sampling is enabled
# and number of tokens is greater than the number of output tokens
if exists(self.output_num_tokens) and (num_tokens - 1) > self.output_num_tokens:
attn, mask, sampled_token_ids = self.ats(attn, v, mask = mask)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out), mask, sampled_token_ids
class Transformer(nn.Module):
def __init__(self, dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
assert len(max_tokens_per_depth) == depth, 'max_tokens_per_depth must be a tuple of length that is equal to the depth of the transformer'
assert sorted(max_tokens_per_depth, reverse = True) == list(max_tokens_per_depth), 'max_tokens_per_depth must be in decreasing order'
assert min(max_tokens_per_depth) > 0, 'max_tokens_per_depth must have at least 1 token at any layer'
self.layers = nn.ModuleList([])
for _, output_num_tokens in zip(range(depth), max_tokens_per_depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
b, n, device = *x.shape[:2], x.device
# use mask to keep track of the paddings when sampling tokens
# as the duplicates (when sampling) are just removed, as mentioned in the paper
mask = torch.ones((b, n), device = device, dtype = torch.bool)
token_ids = torch.arange(n, device = device)
token_ids = repeat(token_ids, 'n -> b n', b = b)
for attn, ff in self.layers:
attn_out, mask, sampled_token_ids = attn(x, mask = mask)
# when token sampling, one needs to then gather the residual tokens with the sampled token ids
if exists(sampled_token_ids):
x = batched_index_select(x, sampled_token_ids, dim = 1)
token_ids = batched_index_select(token_ids, sampled_token_ids, dim = 1)
x = x + attn_out
x = ff(x) + x
return x, token_ids
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, max_tokens_per_depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img, return_sampled_token_ids = False):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x, token_ids = self.transformer(x)
logits = self.mlp_head(x[:, 0])
if return_sampled_token_ids:
# remove CLS token and decrement by 1 to make -1 the padding
token_ids = token_ids[:, 1:] - 1
return logits, token_ids
return logits

View File

@@ -76,6 +76,7 @@ class Attention(nn.Module):
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads))
self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads))
@@ -96,7 +97,10 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn) # talking heads, pre-softmax
attn = self.attend(dots)
attn = self.dropout(attn)
attn = einsum('b h i j, h g -> b g i j', attn, self.mix_heads_post_attn) # talking heads, post-softmax
out = einsum('b h i j, b h j d -> b h i d', attn, v)

View File

@@ -2,7 +2,13 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
# Pre-defined CCT Models
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# CCT Models
__all__ = ['cct_2', 'cct_4', 'cct_6', 'cct_7', 'cct_8', 'cct_14', 'cct_16']
@@ -55,8 +61,8 @@ def _cct(num_layers, num_heads, mlp_ratio, embedding_dim,
padding=padding,
*args, **kwargs)
# modules
# Modules
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, attention_dropout=0.1, projection_dropout=0.1):
super().__init__()
@@ -308,6 +314,7 @@ class CCT(nn.Module):
pooling_padding=1,
*args, **kwargs):
super(CCT, self).__init__()
img_height, img_width = pair(img_size)
self.tokenizer = Tokenizer(n_input_channels=n_input_channels,
n_output_channels=embedding_dim,
@@ -324,8 +331,8 @@ class CCT(nn.Module):
self.classifier = TransformerClassifier(
sequence_length=self.tokenizer.sequence_length(n_channels=n_input_channels,
height=img_size,
width=img_size),
height=img_height,
width=img_width),
embedding_dim=embedding_dim,
seq_pool=True,
dropout_rate=0.,
@@ -336,4 +343,3 @@ class CCT(nn.Module):
def forward(self, x):
x = self.tokenizer(x)
return self.classifier(x)

View File

@@ -48,6 +48,8 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
@@ -69,6 +71,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')

View File

@@ -6,18 +6,9 @@ import torch.nn.functional as F
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
def divisible_by(val, d):
return (val % d) == 0
# cross embed layer
class CrossEmbedLayer(nn.Module):
@@ -71,9 +62,9 @@ class LayerNorm(nn.Module):
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
def FeedForward(dim, mult = 4, dropout = 0.):
return nn.Sequential(
@@ -104,6 +95,9 @@ class Attention(nn.Module):
self.window_size = window_size
self.norm = LayerNorm(dim)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(inner_dim, dim, 1)
@@ -114,7 +108,7 @@ class Attention(nn.Module):
# calculate and store indices for retrieving bias
pos = torch.arange(window_size)
grid = torch.stack(torch.meshgrid(pos, pos))
grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij'))
grid = rearrange(grid, 'c i j -> (i j) c')
rel_pos = grid[:, None] - grid[None, :]
rel_pos += window_size - 1
@@ -150,7 +144,7 @@ class Attention(nn.Module):
# add dynamic positional bias
pos = torch.arange(-wsz, wsz + 1, device = device)
rel_pos = torch.stack(torch.meshgrid(pos, pos))
rel_pos = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij'))
rel_pos = rearrange(rel_pos, 'c i j -> (i j) c')
biases = self.dpb(rel_pos.float())
rel_pos_bias = biases[self.rel_pos_indices]
@@ -160,6 +154,7 @@ class Attention(nn.Module):
# attend
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
# merge heads

View File

@@ -30,9 +30,9 @@ class LayerNorm(nn.Module): # layernorm, but done in the channel dimension #1
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
@@ -76,6 +76,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = DepthWiseConv2d(dim, inner_dim, proj_kernel, padding = padding, stride = 1, bias = False)
self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, proj_kernel, padding = padding, stride = kv_proj_stride, bias = False)
@@ -94,6 +95,7 @@ class Attention(nn.Module):
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)
@@ -162,12 +164,14 @@ class CvT(nn.Module):
dim = config['emb_dim']
self.layers = nn.Sequential(
*layers,
self.layers = nn.Sequential(*layers)
self.to_logits = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
Rearrange('... () () -> ...'),
nn.Linear(dim, num_classes)
)
def forward(self, x):
return self.layers(x)
latents = self.layers(x)
return self.to_logits(latents)

View File

@@ -42,6 +42,8 @@ class Attention(nn.Module):
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.dropout = nn.Dropout(dropout)
self.reattn_weights = nn.Parameter(torch.randn(heads, heads))
self.reattn_norm = nn.Sequential(
@@ -64,6 +66,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = dots.softmax(dim=-1)
attn = self.dropout(attn)
# re-attention

View File

@@ -3,12 +3,16 @@ from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
def pair(t):
return t if isinstance(t, tuple) else (t, t)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, transformer, pool = 'cls', channels = 3):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
image_size_h, image_size_w = pair(image_size)
assert image_size_h % patch_size == 0 and image_size_w % patch_size == 0, 'image dimensions must be divisible by the patch size'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
num_patches = (image_size // patch_size) ** 2
num_patches = (image_size_h // patch_size) * (image_size_w // patch_size)
patch_dim = channels * patch_size ** 2
self.to_patch_embedding = nn.Sequential(

367
vit_pytorch/es_vit.py Normal file
View File

@@ -0,0 +1,367 @@
import copy
import random
from functools import wraps, partial
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torchvision import transforms as T
from einops import rearrange, reduce, repeat
# helper functions
def exists(val):
return val is not None
def default(val, default):
return val if exists(val) else default
def singleton(cache_key):
def inner_fn(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
instance = getattr(self, cache_key)
if instance is not None:
return instance
instance = fn(self, *args, **kwargs)
setattr(self, cache_key, instance)
return instance
return wrapper
return inner_fn
def get_module_device(module):
return next(module.parameters()).device
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
# tensor related helpers
def log(t, eps = 1e-20):
return torch.log(t + eps)
# loss function # (algorithm 1 in the paper)
def view_loss_fn(
teacher_logits,
student_logits,
teacher_temp,
student_temp,
centers,
eps = 1e-20
):
teacher_logits = teacher_logits.detach()
student_probs = (student_logits / student_temp).softmax(dim = -1)
teacher_probs = ((teacher_logits - centers) / teacher_temp).softmax(dim = -1)
return - (teacher_probs * log(student_probs, eps)).sum(dim = -1).mean()
def region_loss_fn(
teacher_logits,
student_logits,
teacher_latent,
student_latent,
teacher_temp,
student_temp,
centers,
eps = 1e-20
):
teacher_logits = teacher_logits.detach()
student_probs = (student_logits / student_temp).softmax(dim = -1)
teacher_probs = ((teacher_logits - centers) / teacher_temp).softmax(dim = -1)
sim_matrix = einsum('b i d, b j d -> b i j', student_latent, teacher_latent)
sim_indices = sim_matrix.max(dim = -1).indices
sim_indices = repeat(sim_indices, 'b n -> b n k', k = teacher_probs.shape[-1])
max_sim_teacher_probs = teacher_probs.gather(1, sim_indices)
return - (max_sim_teacher_probs * log(student_probs, eps)).sum(dim = -1).mean()
# augmentation utils
class RandomApply(nn.Module):
def __init__(self, fn, p):
super().__init__()
self.fn = fn
self.p = p
def forward(self, x):
if random.random() > self.p:
return x
return self.fn(x)
# exponential moving average
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
# MLP class for projector and predictor
class L2Norm(nn.Module):
def forward(self, x, eps = 1e-6):
return F.normalize(x, dim = 1, eps = eps)
class MLP(nn.Module):
def __init__(self, dim, dim_out, num_layers, hidden_size = 256):
super().__init__()
layers = []
dims = (dim, *((hidden_size,) * (num_layers - 1)))
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
is_last = ind == (len(dims) - 1)
layers.extend([
nn.Linear(layer_dim_in, layer_dim_out),
nn.GELU() if not is_last else nn.Identity()
])
self.net = nn.Sequential(
*layers,
L2Norm(),
nn.Linear(hidden_size, dim_out)
)
def forward(self, x):
return self.net(x)
# a wrapper class for the base neural network
# will manage the interception of the hidden layer output
# and pipe it into the projecter and predictor nets
class NetWrapper(nn.Module):
def __init__(self, net, output_dim, projection_hidden_size, projection_num_layers, layer = -2):
super().__init__()
self.net = net
self.layer = layer
self.view_projector = None
self.region_projector = None
self.projection_hidden_size = projection_hidden_size
self.projection_num_layers = projection_num_layers
self.output_dim = output_dim
self.hidden = {}
self.hook_registered = False
def _find_layer(self):
if type(self.layer) == str:
modules = dict([*self.net.named_modules()])
return modules.get(self.layer, None)
elif type(self.layer) == int:
children = [*self.net.children()]
return children[self.layer]
return None
def _hook(self, _, input, output):
device = input[0].device
self.hidden[device] = output
def _register_hook(self):
layer = self._find_layer()
assert layer is not None, f'hidden layer ({self.layer}) not found'
handle = layer.register_forward_hook(self._hook)
self.hook_registered = True
@singleton('view_projector')
def _get_view_projector(self, hidden):
dim = hidden.shape[1]
projector = MLP(dim, self.output_dim, self.projection_num_layers, self.projection_hidden_size)
return projector.to(hidden)
@singleton('region_projector')
def _get_region_projector(self, hidden):
dim = hidden.shape[1]
projector = MLP(dim, self.output_dim, self.projection_num_layers, self.projection_hidden_size)
return projector.to(hidden)
def get_embedding(self, x):
if self.layer == -1:
return self.net(x)
if not self.hook_registered:
self._register_hook()
self.hidden.clear()
_ = self.net(x)
hidden = self.hidden[x.device]
self.hidden.clear()
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
return hidden
def forward(self, x, return_projection = True):
region_latents = self.get_embedding(x)
global_latent = reduce(region_latents, 'b c h w -> b c', 'mean')
if not return_projection:
return global_latent, region_latents
view_projector = self._get_view_projector(global_latent)
region_projector = self._get_region_projector(region_latents)
region_latents = rearrange(region_latents, 'b c h w -> b (h w) c')
return view_projector(global_latent), region_projector(region_latents), region_latents
# main class
class EsViTTrainer(nn.Module):
def __init__(
self,
net,
image_size,
hidden_layer = -2,
projection_hidden_size = 256,
num_classes_K = 65336,
projection_layers = 4,
student_temp = 0.9,
teacher_temp = 0.04,
local_upper_crop_scale = 0.4,
global_lower_crop_scale = 0.5,
moving_average_decay = 0.9,
center_moving_average_decay = 0.9,
augment_fn = None,
augment_fn2 = None
):
super().__init__()
self.net = net
# default BYOL augmentation
DEFAULT_AUG = torch.nn.Sequential(
RandomApply(
T.ColorJitter(0.8, 0.8, 0.8, 0.2),
p = 0.3
),
T.RandomGrayscale(p=0.2),
T.RandomHorizontalFlip(),
RandomApply(
T.GaussianBlur((3, 3), (1.0, 2.0)),
p = 0.2
),
T.Normalize(
mean=torch.tensor([0.485, 0.456, 0.406]),
std=torch.tensor([0.229, 0.224, 0.225])),
)
self.augment1 = default(augment_fn, DEFAULT_AUG)
self.augment2 = default(augment_fn2, DEFAULT_AUG)
# local and global crops
self.local_crop = T.RandomResizedCrop((image_size, image_size), scale = (0.05, local_upper_crop_scale))
self.global_crop = T.RandomResizedCrop((image_size, image_size), scale = (global_lower_crop_scale, 1.))
self.student_encoder = NetWrapper(net, num_classes_K, projection_hidden_size, projection_layers, layer = hidden_layer)
self.teacher_encoder = None
self.teacher_ema_updater = EMA(moving_average_decay)
self.register_buffer('teacher_view_centers', torch.zeros(1, num_classes_K))
self.register_buffer('last_teacher_view_centers', torch.zeros(1, num_classes_K))
self.register_buffer('teacher_region_centers', torch.zeros(1, num_classes_K))
self.register_buffer('last_teacher_region_centers', torch.zeros(1, num_classes_K))
self.teacher_centering_ema_updater = EMA(center_moving_average_decay)
self.student_temp = student_temp
self.teacher_temp = teacher_temp
# get device of network and make wrapper same device
device = get_module_device(net)
self.to(device)
# send a mock image tensor to instantiate singleton parameters
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
@singleton('teacher_encoder')
def _get_teacher_encoder(self):
teacher_encoder = copy.deepcopy(self.student_encoder)
set_requires_grad(teacher_encoder, False)
return teacher_encoder
def reset_moving_average(self):
del self.teacher_encoder
self.teacher_encoder = None
def update_moving_average(self):
assert self.teacher_encoder is not None, 'target encoder has not been created yet'
update_moving_average(self.teacher_ema_updater, self.teacher_encoder, self.student_encoder)
new_teacher_view_centers = self.teacher_centering_ema_updater.update_average(self.teacher_view_centers, self.last_teacher_view_centers)
self.teacher_view_centers.copy_(new_teacher_view_centers)
new_teacher_region_centers = self.teacher_centering_ema_updater.update_average(self.teacher_region_centers, self.last_teacher_region_centers)
self.teacher_region_centers.copy_(new_teacher_region_centers)
def forward(
self,
x,
return_embedding = False,
return_projection = True,
student_temp = None,
teacher_temp = None
):
if return_embedding:
return self.student_encoder(x, return_projection = return_projection)
image_one, image_two = self.augment1(x), self.augment2(x)
local_image_one, local_image_two = self.local_crop(image_one), self.local_crop(image_two)
global_image_one, global_image_two = self.global_crop(image_one), self.global_crop(image_two)
student_view_proj_one, student_region_proj_one, student_latent_one = self.student_encoder(local_image_one)
student_view_proj_two, student_region_proj_two, student_latent_two = self.student_encoder(local_image_two)
with torch.no_grad():
teacher_encoder = self._get_teacher_encoder()
teacher_view_proj_one, teacher_region_proj_one, teacher_latent_one = teacher_encoder(global_image_one)
teacher_view_proj_two, teacher_region_proj_two, teacher_latent_two = teacher_encoder(global_image_two)
view_loss_fn_ = partial(
view_loss_fn,
student_temp = default(student_temp, self.student_temp),
teacher_temp = default(teacher_temp, self.teacher_temp),
centers = self.teacher_view_centers
)
region_loss_fn_ = partial(
region_loss_fn,
student_temp = default(student_temp, self.student_temp),
teacher_temp = default(teacher_temp, self.teacher_temp),
centers = self.teacher_region_centers
)
# calculate view-level loss
teacher_view_logits_avg = torch.cat((teacher_view_proj_one, teacher_view_proj_two)).mean(dim = 0)
self.last_teacher_view_centers.copy_(teacher_view_logits_avg)
teacher_region_logits_avg = torch.cat((teacher_region_proj_one, teacher_region_proj_two)).mean(dim = (0, 1))
self.last_teacher_region_centers.copy_(teacher_region_logits_avg)
view_loss = (view_loss_fn_(teacher_view_proj_one, student_view_proj_two) \
+ view_loss_fn_(teacher_view_proj_two, student_view_proj_one)) / 2
# calculate region-level loss
region_loss = (region_loss_fn_(teacher_region_proj_one, student_region_proj_two, teacher_latent_one, student_latent_two) \
+ region_loss_fn_(teacher_region_proj_two, student_region_proj_one, teacher_latent_two, student_latent_one)) / 2
return (view_loss + region_loss) / 2

90
vit_pytorch/extractor.py Normal file
View File

@@ -0,0 +1,90 @@
import torch
from torch import nn
def exists(val):
return val is not None
def identity(t):
return t
def clone_and_detach(t):
return t.clone().detach()
def apply_tuple_or_single(fn, val):
if isinstance(val, tuple):
return tuple(map(fn, val))
return fn(val)
class Extractor(nn.Module):
def __init__(
self,
vit,
device = None,
layer = None,
layer_name = 'transformer',
layer_save_input = False,
return_embeddings_only = False,
detach = True
):
super().__init__()
self.vit = vit
self.data = None
self.latents = None
self.hooks = []
self.hook_registered = False
self.ejected = False
self.device = device
self.layer = layer
self.layer_name = layer_name
self.layer_save_input = layer_save_input # whether to save input or output of layer
self.return_embeddings_only = return_embeddings_only
self.detach_fn = clone_and_detach if detach else identity
def _hook(self, _, inputs, output):
layer_output = inputs if self.layer_save_input else output
self.latents = apply_tuple_or_single(self.detach_fn, layer_output)
def _register_hook(self):
if not exists(self.layer):
assert hasattr(self.vit, self.layer_name), 'layer whose output to take as embedding not found in vision transformer'
layer = getattr(self.vit, self.layer_name)
else:
layer = self.layer
handle = layer.register_forward_hook(self._hook)
self.hooks.append(handle)
self.hook_registered = True
def eject(self):
self.ejected = True
for hook in self.hooks:
hook.remove()
self.hooks.clear()
return self.vit
def clear(self):
del self.latents
self.latents = None
def forward(
self,
img,
return_embeddings_only = False
):
assert not self.ejected, 'extractor has been ejected, cannot be used anymore'
self.clear()
if not self.hook_registered:
self._register_hook()
pred = self.vit(img)
target_device = self.device if exists(self.device) else img.device
latents = apply_tuple_or_single(lambda t: t.to(target_device), self.latents)
if return_embeddings_only or self.return_embeddings_only:
return latents
return pred, latents

View File

@@ -0,0 +1,216 @@
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# controlling freezing of layers
def set_module_requires_grad_(module, requires_grad):
for param in module.parameters():
param.requires_grad = requires_grad
def freeze_all_layers_(module):
set_module_requires_grad_(module, False)
def unfreeze_all_layers_(module):
set_module_requires_grad_(module, True)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, attn_mask = None, memories = None):
x = self.norm(x)
x_kv = x # input for key / values projection
if exists(memories):
# add memories to key / values if it is passed in
memories = repeat(memories, 'n d -> b n d', b = x.shape[0]) if memories.ndim == 2 else memories
x_kv = torch.cat((x_kv, memories), dim = 1)
qkv = (self.to_q(x), *self.to_kv(x_kv).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
if exists(attn_mask):
dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max)
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x, attn_mask = None, memories = None):
for ind, (attn, ff) in enumerate(self.layers):
layer_memories = memories[ind] if exists(memories) else None
x = attn(x, attn_mask = attn_mask, memories = layer_memories) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def img_to_tokens(self, img):
x = self.to_patch_embedding(img)
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = x.shape[0])
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding
x = self.dropout(x)
return x
def forward(self, img):
x = self.img_to_tokens(img)
x = self.transformer(x)
cls_tokens = x[:, 0]
return self.mlp_head(cls_tokens)
# adapter with learnable memories per layer, memory CLS token, and learnable adapter head
class Adapter(nn.Module):
def __init__(
self,
*,
vit,
num_memories_per_layer = 10,
num_classes = 2,
):
super().__init__()
assert isinstance(vit, ViT)
# extract some model variables needed
dim = vit.cls_token.shape[-1]
layers = len(vit.transformer.layers)
num_patches = vit.pos_embedding.shape[-2]
self.vit = vit
# freeze ViT backbone - only memories will be finetuned
freeze_all_layers_(vit)
# learnable parameters
self.memory_cls_token = nn.Parameter(torch.randn(dim))
self.memories_per_layer = nn.Parameter(torch.randn(layers, num_memories_per_layer, dim))
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
# specialized attention mask to preserve the output of the original ViT
# it allows the memory CLS token to attend to all other tokens (and the learnable memory layer tokens), but not vice versa
attn_mask = torch.ones((num_patches, num_patches), dtype = torch.bool)
attn_mask = F.pad(attn_mask, (1, num_memories_per_layer), value = False) # main tokens cannot attend to learnable memories per layer
attn_mask = F.pad(attn_mask, (0, 0, 1, 0), value = True) # memory CLS token can attend to everything
self.register_buffer('attn_mask', attn_mask)
def forward(self, img):
b = img.shape[0]
tokens = self.vit.img_to_tokens(img)
# add task specific memory tokens
memory_cls_tokens = repeat(self.memory_cls_token, 'd -> b 1 d', b = b)
tokens = torch.cat((memory_cls_tokens, tokens), dim = 1)
# pass memories along with image tokens through transformer for attending
out = self.vit.transformer(tokens, memories = self.memories_per_layer, attn_mask = self.attn_mask)
# extract memory CLS tokens
memory_cls_tokens = out[:, 0]
# pass through task specific adapter head
return self.mlp_head(memory_cls_tokens)

View File

@@ -52,6 +52,7 @@ class Attention(nn.Module):
self.to_v = nn.Sequential(nn.Conv2d(dim, inner_dim_value, 1, bias = False), nn.BatchNorm2d(inner_dim_value))
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
out_batch_norm = nn.BatchNorm2d(dim_out)
nn.init.zeros_(out_batch_norm.weight)
@@ -70,8 +71,8 @@ class Attention(nn.Module):
q_range = torch.arange(0, fmap_size, step = (2 if downsample else 1))
k_range = torch.arange(fmap_size)
q_pos = torch.stack(torch.meshgrid(q_range, q_range), dim = -1)
k_pos = torch.stack(torch.meshgrid(k_range, k_range), dim = -1)
q_pos = torch.stack(torch.meshgrid(q_range, q_range, indexing = 'ij'), dim = -1)
k_pos = torch.stack(torch.meshgrid(k_range, k_range, indexing = 'ij'), dim = -1)
q_pos, k_pos = map(lambda t: rearrange(t, 'i j c -> (i j) c'), (q_pos, k_pos))
rel_pos = (q_pos[:, None, ...] - k_pos[None, :, ...]).abs()
@@ -100,6 +101,7 @@ class Attention(nn.Module):
dots = self.apply_pos_bias(dots)
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h (x y) d -> b (h d) x y', h = h, y = y)

View File

@@ -78,6 +78,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
@@ -93,6 +94,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')

View File

@@ -71,6 +71,10 @@ class MAE(nn.Module):
decoder_tokens = self.enc_to_dec(encoded_tokens)
# reapply decoder position embedding to unmasked tokens
decoder_tokens = decoder_tokens + self.decoder_pos_emb(unmasked_indices)
# repeat mask tokens for number of masked, and add the positions using the masked indices derived above
mask_tokens = repeat(self.mask_token, 'd -> b n d', b = batch, n = num_masked)

288
vit_pytorch/max_vit.py Normal file
View File

@@ -0,0 +1,288 @@
from functools import partial
import torch
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
class PreNormResidual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x)) + x
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# MBConv
class SqueezeExcitation(nn.Module):
def __init__(self, dim, shrinkage_rate = 0.25):
super().__init__()
hidden_dim = int(dim * shrinkage_rate)
self.gate = nn.Sequential(
Reduce('b c h w -> b c', 'mean'),
nn.Linear(dim, hidden_dim, bias = False),
nn.SiLU(),
nn.Linear(hidden_dim, dim, bias = False),
nn.Sigmoid(),
Rearrange('b c -> b c 1 1')
)
def forward(self, x):
return x * self.gate(x)
class MBConvResidual(nn.Module):
def __init__(self, fn, dropout = 0.):
super().__init__()
self.fn = fn
self.dropsample = Dropsample(dropout)
def forward(self, x):
out = self.fn(x)
out = self.dropsample(out)
return out + x
class Dropsample(nn.Module):
def __init__(self, prob = 0):
super().__init__()
self.prob = prob
def forward(self, x):
device = x.device
if self.prob == 0. or (not self.training):
return x
keep_mask = torch.FloatTensor((x.shape[0], 1, 1, 1), device = device).uniform_() > self.prob
return x * keep_mask / (1 - self.prob)
def MBConv(
dim_in,
dim_out,
*,
downsample,
expansion_rate = 4,
shrinkage_rate = 0.25,
dropout = 0.
):
hidden_dim = int(expansion_rate * dim_out)
stride = 2 if downsample else 1
net = nn.Sequential(
nn.Conv2d(dim_in, hidden_dim, 1),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
nn.Conv2d(hidden_dim, hidden_dim, 3, stride = stride, padding = 1, groups = hidden_dim),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
SqueezeExcitation(hidden_dim, shrinkage_rate = shrinkage_rate),
nn.Conv2d(hidden_dim, dim_out, 1),
nn.BatchNorm2d(dim_out)
)
if dim_in == dim_out and not downsample:
net = MBConvResidual(net, dropout = dropout)
return net
# attention related classes
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head = 32,
dropout = 0.,
window_size = 7
):
super().__init__()
assert (dim % dim_head) == 0, 'dimension should be divisible by dimension per head'
self.heads = dim // dim_head
self.scale = dim_head ** -0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_out = nn.Sequential(
nn.Linear(dim, dim, bias = False),
nn.Dropout(dropout)
)
# relative positional bias
self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads)
pos = torch.arange(window_size)
grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij'))
grid = rearrange(grid, 'c i j -> (i j) c')
rel_pos = rearrange(grid, 'i ... -> i 1 ...') - rearrange(grid, 'j ... -> 1 j ...')
rel_pos += window_size - 1
rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1)
self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False)
def forward(self, x):
batch, height, width, window_height, window_width, _, device, h = *x.shape, x.device, self.heads
# flatten
x = rearrange(x, 'b x y w1 w2 d -> (b x y) (w1 w2) d')
# project for queries, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
# split heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d ) -> b h n d', h = h), (q, k, v))
# scale
q = q * self.scale
# sim
sim = einsum('b h i d, b h j d -> b h i j', q, k)
# add positional bias
bias = self.rel_pos_bias(self.rel_pos_indices)
sim = sim + rearrange(bias, 'i j h -> h i j')
# attention
attn = self.attend(sim)
# aggregate
out = einsum('b h i j, b h j d -> b h i d', attn, v)
# merge heads
out = rearrange(out, 'b h (w1 w2) d -> b w1 w2 (h d)', w1 = window_height, w2 = window_width)
# combine heads out
out = self.to_out(out)
return rearrange(out, '(b x y) ... -> b x y ...', x = height, y = width)
class MaxViT(nn.Module):
def __init__(
self,
*,
num_classes,
dim,
depth,
dim_head = 32,
dim_conv_stem = None,
window_size = 7,
mbconv_expansion_rate = 4,
mbconv_shrinkage_rate = 0.25,
dropout = 0.1,
channels = 3
):
super().__init__()
assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage'
# convolutional stem
dim_conv_stem = default(dim_conv_stem, dim)
self.conv_stem = nn.Sequential(
nn.Conv2d(channels, dim_conv_stem, 3, stride = 2, padding = 1),
nn.Conv2d(dim_conv_stem, dim_conv_stem, 3, padding = 1)
)
# variables
num_stages = len(depth)
dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages)))
dims = (dim_conv_stem, *dims)
dim_pairs = tuple(zip(dims[:-1], dims[1:]))
self.layers = nn.ModuleList([])
# shorthand for window size for efficient block - grid like attention
w = window_size
# iterate through stages
for ind, ((layer_dim_in, layer_dim), layer_depth) in enumerate(zip(dim_pairs, depth)):
for stage_ind in range(layer_depth):
is_first = stage_ind == 0
stage_dim_in = layer_dim_in if is_first else layer_dim
block = nn.Sequential(
MBConv(
stage_dim_in,
layer_dim,
downsample = is_first,
expansion_rate = mbconv_expansion_rate,
shrinkage_rate = mbconv_shrinkage_rate
),
Rearrange('b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w), # block-like attention
PreNormResidual(layer_dim, Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = w)),
PreNormResidual(layer_dim, FeedForward(dim = layer_dim, dropout = dropout)),
Rearrange('b x y w1 w2 d -> b d (x w1) (y w2)'),
Rearrange('b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w), # grid-like attention
PreNormResidual(layer_dim, Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = w)),
PreNormResidual(layer_dim, FeedForward(dim = layer_dim, dropout = dropout)),
Rearrange('b x y w1 w2 d -> b d (w1 x) (w2 y)'),
)
self.layers.append(block)
# mlp head out
self.mlp_head = nn.Sequential(
Reduce('b d h w -> b d', 'mean'),
nn.LayerNorm(dims[-1]),
nn.Linear(dims[-1], num_classes)
)
def forward(self, x):
x = self.conv_stem(x)
for stage in self.layers:
x = stage(x)
return self.mlp_head(x)

252
vit_pytorch/mobile_vit.py Normal file
View File

@@ -0,0 +1,252 @@
import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Reduce
# helpers
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.SiLU()
)
def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
return nn.Sequential(
nn.Conv2d(inp, oup, kernal_size, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.SiLU()
)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(
t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b p h n d -> b p n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
"""Transformer block described in ViT.
Paper: https://arxiv.org/abs/2010.11929
Based on: https://github.com/lucidrains/vit-pytorch
"""
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class MV2Block(nn.Module):
"""MV2 block described in MobileNetV2.
Paper: https://arxiv.org/pdf/1801.04381
Based on: https://github.com/tonylins/pytorch-mobilenet-v2
"""
def __init__(self, inp, oup, stride=1, expansion=4):
super().__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(inp * expansion)
self.use_res_connect = self.stride == 1 and inp == oup
if expansion == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride,
1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride,
1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
out = self.conv(x)
if self.use_res_connect:
out = out + x
return out
class MobileViTBlock(nn.Module):
def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
super().__init__()
self.ph, self.pw = patch_size
self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
self.conv2 = conv_1x1_bn(channel, dim)
self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)
self.conv3 = conv_1x1_bn(dim, channel)
self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
def forward(self, x):
y = x.clone()
# Local representations
x = self.conv1(x)
x = self.conv2(x)
# Global representations
_, _, h, w = x.shape
x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d',
ph=self.ph, pw=self.pw)
x = self.transformer(x)
x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)',
h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw)
# Fusion
x = self.conv3(x)
x = torch.cat((x, y), 1)
x = self.conv4(x)
return x
class MobileViT(nn.Module):
"""MobileViT.
Paper: https://arxiv.org/abs/2110.02178
Based on: https://github.com/chinhsuanwu/mobilevit-pytorch
"""
def __init__(
self,
image_size,
dims,
channels,
num_classes,
expansion=4,
kernel_size=3,
patch_size=(2, 2),
depths=(2, 4, 3)
):
super().__init__()
assert len(dims) == 3, 'dims must be a tuple of 3'
assert len(depths) == 3, 'depths must be a tuple of 3'
ih, iw = image_size
ph, pw = patch_size
assert ih % ph == 0 and iw % pw == 0
init_dim, *_, last_dim = channels
self.conv1 = conv_nxn_bn(3, init_dim, stride=2)
self.stem = nn.ModuleList([])
self.stem.append(MV2Block(channels[0], channels[1], 1, expansion))
self.stem.append(MV2Block(channels[1], channels[2], 2, expansion))
self.stem.append(MV2Block(channels[2], channels[3], 1, expansion))
self.stem.append(MV2Block(channels[2], channels[3], 1, expansion))
self.trunk = nn.ModuleList([])
self.trunk.append(nn.ModuleList([
MV2Block(channels[3], channels[4], 2, expansion),
MobileViTBlock(dims[0], depths[0], channels[5],
kernel_size, patch_size, int(dims[0] * 2))
]))
self.trunk.append(nn.ModuleList([
MV2Block(channels[5], channels[6], 2, expansion),
MobileViTBlock(dims[1], depths[1], channels[7],
kernel_size, patch_size, int(dims[1] * 4))
]))
self.trunk.append(nn.ModuleList([
MV2Block(channels[7], channels[8], 2, expansion),
MobileViTBlock(dims[2], depths[2], channels[9],
kernel_size, patch_size, int(dims[2] * 4))
]))
self.to_logits = nn.Sequential(
conv_1x1_bn(channels[-2], last_dim),
Reduce('b c h w -> b c', 'mean'),
nn.Linear(channels[-1], num_classes, bias=False)
)
def forward(self, x):
x = self.conv1(x)
for conv in self.stem:
x = conv(x)
for conv, attn in self.trunk:
x = conv(x)
x = attn(x)
return self.to_logits(x)

View File

@@ -20,9 +20,9 @@ class LayerNorm(nn.Module):
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
@@ -55,6 +55,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
self.to_out = nn.Sequential(
@@ -71,6 +72,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w)
@@ -131,10 +133,11 @@ class NesT(nn.Module):
seq_len = (fmap_size // blocks) ** 2 # sequence length is held constant across heirarchy
hierarchies = list(reversed(range(num_hierarchies)))
mults = [2 ** i for i in hierarchies]
mults = [2 ** i for i in reversed(hierarchies)]
layer_heads = list(map(lambda t: t * heads, mults))
layer_dims = list(map(lambda t: t * dim, mults))
last_dim = layer_dims[-1]
layer_dims = [*layer_dims, layer_dims[-1]]
dim_pairs = zip(layer_dims[:-1], layer_dims[1:])
@@ -157,10 +160,11 @@ class NesT(nn.Module):
Aggregate(dim_in, dim_out) if not is_last else nn.Identity()
]))
self.mlp_head = nn.Sequential(
LayerNorm(dim),
LayerNorm(last_dim),
Reduce('b c h w -> b c', 'mean'),
nn.Linear(dim, num_classes)
nn.Linear(last_dim, num_classes)
)
def forward(self, img):

140
vit_pytorch/parallel_vit.py Normal file
View File

@@ -0,0 +1,140 @@
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class Parallel(nn.Module):
def __init__(self, *fns):
super().__init__()
self.fns = nn.ModuleList(fns)
def forward(self, x):
return sum([fn(x) for fn in self.fns])
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, num_parallel_branches = 2, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
attn_block = lambda: PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))
ff_block = lambda: PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
for _ in range(depth):
self.layers.append(nn.ModuleList([
Parallel(*[attn_block() for _ in range(num_parallel_branches)]),
Parallel(*[ff_block() for _ in range(num_parallel_branches)]),
]))
def forward(self, x):
for attns, ffs in self.layers:
x = attns(x) + x
x = ffs(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', num_parallel_branches = 2, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, num_parallel_branches, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

View File

@@ -48,6 +48,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
@@ -63,6 +64,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
@@ -129,14 +131,15 @@ class PiT(nn.Module):
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.
emb_dropout = 0.,
channels = 3
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing'
heads = cast_tuple(heads, len(depth))
patch_dim = 3 * patch_size ** 2
patch_dim = channels * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
nn.Unfold(kernel_size = patch_size, stride = patch_size // 2),

View File

@@ -55,5 +55,5 @@ class Recorder(nn.Module):
target_device = self.device if self.device is not None else img.device
recordings = tuple(map(lambda t: t.to(target_device), self.recordings))
attns = torch.stack(recordings, dim = 1)
attns = torch.stack(recordings, dim = 1) if len(recordings) > 0 else None
return pred, attns

View File

@@ -61,8 +61,13 @@ class Attention(nn.Module):
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, rel_pos_bias = None):
h = self.heads
@@ -86,6 +91,7 @@ class Attention(nn.Module):
sim = sim + rel_pos_bias
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
# merge heads
@@ -132,7 +138,7 @@ class R2LTransformer(nn.Module):
h_range = torch.arange(window_size_h, device = device)
w_range = torch.arange(window_size_w, device = device)
grid_x, grid_y = torch.meshgrid(h_range, w_range)
grid_x, grid_y = torch.meshgrid(h_range, w_range, indexing = 'ij')
grid = torch.stack((grid_x, grid_y))
grid = rearrange(grid, 'c h w -> c (h w)')
grid = (grid[:, :, None] - grid[:, None, :]) + (self.window_size - 1)

View File

@@ -104,6 +104,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.use_ds_conv = use_ds_conv
@@ -148,6 +149,7 @@ class Attention(nn.Module):
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)

306
vit_pytorch/scalable_vit.py Normal file
View File

@@ -0,0 +1,306 @@
from functools import partial
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = ChanLayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x))
class Downsample(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.conv = nn.Conv2d(dim_in, dim_out, 3, stride = 2, padding = 1)
def forward(self, x):
return self.conv(x)
class PEG(nn.Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
def forward(self, x):
return self.proj(x) + x
# feedforward
class FeedForward(nn.Module):
def __init__(self, dim, expansion_factor = 4, dropout = 0.):
super().__init__()
inner_dim = dim * expansion_factor
self.net = nn.Sequential(
nn.Conv2d(dim, inner_dim, 1),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# attention
class ScalableSelfAttention(nn.Module):
def __init__(
self,
dim,
heads = 8,
dim_key = 32,
dim_value = 32,
dropout = 0.,
reduction_factor = 1
):
super().__init__()
self.heads = heads
self.scale = dim_key ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
self.to_k = nn.Conv2d(dim, dim_key * heads, reduction_factor, stride = reduction_factor, bias = False)
self.to_v = nn.Conv2d(dim, dim_value * heads, reduction_factor, stride = reduction_factor, bias = False)
self.to_out = nn.Sequential(
nn.Conv2d(dim_value * heads, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
height, width, heads = *x.shape[-2:], self.heads
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
# split out heads
q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v))
# similarity
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
# attention
attn = self.attend(dots)
attn = self.dropout(attn)
# aggregate values
out = torch.matmul(attn, v)
# merge back heads
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = height, y = width)
return self.to_out(out)
class InteractiveWindowedSelfAttention(nn.Module):
def __init__(
self,
dim,
window_size,
heads = 8,
dim_key = 32,
dim_value = 32,
dropout = 0.
):
super().__init__()
self.heads = heads
self.scale = dim_key ** -0.5
self.window_size = window_size
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.local_interactive_module = nn.Conv2d(dim_value * heads, dim_value * heads, 3, padding = 1)
self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
self.to_k = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
self.to_v = nn.Conv2d(dim, dim_value * heads, 1, bias = False)
self.to_out = nn.Sequential(
nn.Conv2d(dim_value * heads, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
height, width, heads, wsz = *x.shape[-2:], self.heads, self.window_size
wsz_h, wsz_w = default(wsz, height), default(wsz, width)
assert (height % wsz_h) == 0 and (width % wsz_w) == 0, f'height ({height}) or width ({width}) of feature map is not divisible by the window size ({wsz_h}, {wsz_w})'
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
# get output of LIM
local_out = self.local_interactive_module(v)
# divide into window (and split out heads) for efficient self attention
q, k, v = map(lambda t: rearrange(t, 'b (h d) (x w1) (y w2) -> (b x y) h (w1 w2) d', h = heads, w1 = wsz_h, w2 = wsz_w), (q, k, v))
# similarity
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
# attention
attn = self.attend(dots)
attn = self.dropout(attn)
# aggregate values
out = torch.matmul(attn, v)
# reshape the windows back to full feature map (and merge heads)
out = rearrange(out, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz_h, y = width // wsz_w, w1 = wsz_h, w2 = wsz_w)
# add LIM output
out = out + local_out
return self.to_out(out)
class Transformer(nn.Module):
def __init__(
self,
dim,
depth,
heads = 8,
ff_expansion_factor = 4,
dropout = 0.,
ssa_dim_key = 32,
ssa_dim_value = 32,
ssa_reduction_factor = 1,
iwsa_dim_key = 32,
iwsa_dim_value = 32,
iwsa_window_size = None,
norm_output = True
):
super().__init__()
self.layers = nn.ModuleList([])
for ind in range(depth):
is_first = ind == 0
self.layers.append(nn.ModuleList([
PreNorm(dim, ScalableSelfAttention(dim, heads = heads, dim_key = ssa_dim_key, dim_value = ssa_dim_value, reduction_factor = ssa_reduction_factor, dropout = dropout)),
PreNorm(dim, FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout)),
PEG(dim) if is_first else None,
PreNorm(dim, FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout)),
PreNorm(dim, InteractiveWindowedSelfAttention(dim, heads = heads, dim_key = iwsa_dim_key, dim_value = iwsa_dim_value, window_size = iwsa_window_size, dropout = dropout))
]))
self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity()
def forward(self, x):
for ssa, ff1, peg, iwsa, ff2 in self.layers:
x = ssa(x) + x
x = ff1(x) + x
if exists(peg):
x = peg(x)
x = iwsa(x) + x
x = ff2(x) + x
return self.norm(x)
class ScalableViT(nn.Module):
def __init__(
self,
*,
num_classes,
dim,
depth,
heads,
reduction_factor,
window_size = None,
iwsa_dim_key = 32,
iwsa_dim_value = 32,
ssa_dim_key = 32,
ssa_dim_value = 32,
ff_expansion_factor = 4,
channels = 3,
dropout = 0.
):
super().__init__()
self.to_patches = nn.Conv2d(channels, dim, 7, stride = 4, padding = 3)
assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage'
num_stages = len(depth)
dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages)))
hyperparams_per_stage = [
heads,
ssa_dim_key,
ssa_dim_value,
reduction_factor,
iwsa_dim_key,
iwsa_dim_value,
window_size,
]
hyperparams_per_stage = list(map(partial(cast_tuple, length = num_stages), hyperparams_per_stage))
assert all(tuple(map(lambda arr: len(arr) == num_stages, hyperparams_per_stage)))
self.layers = nn.ModuleList([])
for ind, (layer_dim, layer_depth, layer_heads, layer_ssa_dim_key, layer_ssa_dim_value, layer_ssa_reduction_factor, layer_iwsa_dim_key, layer_iwsa_dim_value, layer_window_size) in enumerate(zip(dims, depth, *hyperparams_per_stage)):
is_last = ind == (num_stages - 1)
self.layers.append(nn.ModuleList([
Transformer(dim = layer_dim, depth = layer_depth, heads = layer_heads, ff_expansion_factor = ff_expansion_factor, dropout = dropout, ssa_dim_key = layer_ssa_dim_key, ssa_dim_value = layer_ssa_dim_value, ssa_reduction_factor = layer_ssa_reduction_factor, iwsa_dim_key = layer_iwsa_dim_key, iwsa_dim_value = layer_iwsa_dim_value, iwsa_window_size = layer_window_size, norm_output = not is_last),
Downsample(layer_dim, layer_dim * 2) if not is_last else None
]))
self.mlp_head = nn.Sequential(
Reduce('b d h w -> b d', 'mean'),
nn.LayerNorm(dims[-1]),
nn.Linear(dims[-1], num_classes)
)
def forward(self, img):
x = self.to_patches(img)
for transformer, downsample in self.layers:
x = transformer(x)
if exists(downsample):
x = downsample(x)
return self.mlp_head(x)

294
vit_pytorch/sep_vit.py Normal file
View File

@@ -0,0 +1,294 @@
from functools import partial
import torch
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
# helpers
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = ChanLayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x))
class OverlappingPatchEmbed(nn.Module):
def __init__(self, dim_in, dim_out, stride = 2):
super().__init__()
kernel_size = stride * 2 - 1
padding = kernel_size // 2
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding)
def forward(self, x):
return self.conv(x)
class PEG(nn.Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
def forward(self, x):
return self.proj(x) + x
# feedforward
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Conv2d(dim, inner_dim, 1),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# attention
class DSSA(nn.Module):
def __init__(
self,
dim,
heads = 8,
dim_head = 32,
dropout = 0.,
window_size = 7
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
self.window_size = window_size
inner_dim = dim_head * heads
self.attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False)
# window tokens
self.window_tokens = nn.Parameter(torch.randn(dim))
# prenorm and non-linearity for window tokens
# then projection to queries and keys for window tokens
self.window_tokens_to_qk = nn.Sequential(
nn.LayerNorm(dim_head),
nn.GELU(),
Rearrange('b h n c -> b (h c) n'),
nn.Conv1d(inner_dim, inner_dim * 2, 1),
Rearrange('b (h c) n -> b h n c', h = heads),
)
# window attention
self.window_attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_out = nn.Sequential(
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
"""
einstein notation
b - batch
c - channels
w1 - window size (height)
w2 - also window size (width)
i - sequence dimension (source)
j - sequence dimension (target dimension to be reduced)
h - heads
x - height of feature map divided by window size
y - width of feature map divided by window size
"""
batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size
assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}'
num_windows = (height // wsz) * (width // wsz)
# fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention
x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz)
# add windowing tokens
w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0])
x = torch.cat((w, x), dim = -1)
# project for queries, keys, value
q, k, v = self.to_qkv(x).chunk(3, dim = 1)
# split out heads
q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v))
# scale
q = q * self.scale
# similarity
dots = einsum('b h i d, b h j d -> b h i j', q, k)
# attention
attn = self.attend(dots)
# aggregate values
out = torch.matmul(attn, v)
# split out windowed tokens
window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:]
# early return if there is only 1 window
if num_windows == 1:
fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
return self.to_out(fmap)
# carry out the pointwise attention, the main novelty in the paper
window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz)
windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz)
# windowed queries and keys (preceded by prenorm activation)
w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1)
# scale
w_q = w_q * self.scale
# similarities
w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k)
w_attn = self.window_attend(w_dots)
# aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before)
aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps)
# fold back the windows and then combine heads for aggregation
fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
return self.to_out(fmap)
class Transformer(nn.Module):
def __init__(
self,
dim,
depth,
dim_head = 32,
heads = 8,
ff_mult = 4,
dropout = 0.,
norm_output = True
):
super().__init__()
self.layers = nn.ModuleList([])
for ind in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, DSSA(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mult = ff_mult, dropout = dropout)),
]))
self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity()
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SepViT(nn.Module):
def __init__(
self,
*,
num_classes,
dim,
depth,
heads,
window_size = 7,
dim_head = 32,
ff_mult = 4,
channels = 3,
dropout = 0.
):
super().__init__()
assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage'
num_stages = len(depth)
dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages)))
dims = (channels, *dims)
dim_pairs = tuple(zip(dims[:-1], dims[1:]))
strides = (4, *((2,) * (num_stages - 1)))
hyperparams_per_stage = [heads, window_size]
hyperparams_per_stage = list(map(partial(cast_tuple, length = num_stages), hyperparams_per_stage))
assert all(tuple(map(lambda arr: len(arr) == num_stages, hyperparams_per_stage)))
self.layers = nn.ModuleList([])
for ind, ((layer_dim_in, layer_dim), layer_depth, layer_stride, layer_heads, layer_window_size) in enumerate(zip(dim_pairs, depth, strides, *hyperparams_per_stage)):
is_last = ind == (num_stages - 1)
self.layers.append(nn.ModuleList([
OverlappingPatchEmbed(layer_dim_in, layer_dim, stride = layer_stride),
PEG(layer_dim),
Transformer(dim = layer_dim, depth = layer_depth, heads = layer_heads, ff_mult = ff_mult, dropout = dropout, norm_output = not is_last),
]))
self.mlp_head = nn.Sequential(
Reduce('b d h w -> b d', 'mean'),
nn.LayerNorm(dims[-1]),
nn.Linear(dims[-1], num_classes)
)
def forward(self, x):
for ope, peg, transformer in self.layers:
x = ope(x)
x = peg(x)
x = transformer(x)
return self.mlp_head(x)

116
vit_pytorch/simple_vit.py Normal file
View File

@@ -0,0 +1,116 @@
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32):
_, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1)
omega = 1. / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.to_latent = nn.Identity()
self.linear_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
*_, h, w, dtype = *img.shape, img.dtype
x = self.to_patch_embedding(img)
pe = posemb_sincos_2d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -38,9 +38,9 @@ class LayerNorm(nn.Module):
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
@@ -130,6 +130,8 @@ class GlobalAttention(nn.Module):
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
self.to_kv = nn.Conv2d(dim, inner_dim * 2, k, stride = k, bias = False)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
@@ -145,6 +147,7 @@ class GlobalAttention(nn.Module):
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = dots.softmax(dim = -1)
attn = self.dropout(attn)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)

View File

@@ -42,6 +42,8 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
@@ -56,6 +58,7 @@ class Attention(nn.Module):
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
@@ -111,7 +114,7 @@ class ViT(nn.Module):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)

129
vit_pytorch/vit_3d.py Normal file
View File

@@ -0,0 +1,129 @@
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size'
num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b (f h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

View File

@@ -0,0 +1,145 @@
from math import sqrt
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class LSA(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.temperature = nn.Parameter(torch.log(torch.tensor(dim_head ** -0.5)))
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.temperature.exp()
mask = torch.eye(dots.shape[-1], device = dots.device, dtype = torch.bool)
mask_value = -torch.finfo(dots.dtype).max
dots = dots.masked_fill(mask, mask_value)
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, LSA(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class SPT(nn.Module):
def __init__(self, *, dim, patch_size, channels = 3):
super().__init__()
patch_dim = patch_size * patch_size * 5 * channels
self.to_patch_tokens = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim)
)
def forward(self, x):
shifts = ((1, -1, 0, 0), (-1, 1, 0, 0), (0, 0, 1, -1), (0, 0, -1, 1))
shifted_x = list(map(lambda shift: F.pad(x, shift), shifts))
x_with_shifts = torch.cat((x, *shifted_x), dim = 1)
return self.to_patch_tokens(x_with_shifts)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = SPT(dim = dim, patch_size = patch_size, channels = channels)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

View File

@@ -0,0 +1,147 @@
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
# helpers
def exists(val):
return val is not None
def default(val ,d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# patch merger class
class PatchMerger(nn.Module):
def __init__(self, dim, num_tokens_out):
super().__init__()
self.scale = dim ** -0.5
self.norm = nn.LayerNorm(dim)
self.queries = nn.Parameter(torch.randn(num_tokens_out, dim))
def forward(self, x):
x = self.norm(x)
sim = torch.matmul(self.queries, x.transpose(-1, -2)) * self.scale
attn = sim.softmax(dim = -1)
return torch.matmul(attn, x)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., patch_merge_layer = None, patch_merge_num_tokens = 8):
super().__init__()
self.layers = nn.ModuleList([])
self.patch_merge_layer_index = default(patch_merge_layer, depth // 2) - 1 # default to mid-way through transformer, as shown in paper
self.patch_merger = PatchMerger(dim = dim, num_tokens_out = patch_merge_num_tokens)
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for index, (attn, ff) in enumerate(self.layers):
x = attn(x) + x
x = ff(x) + x
if index == self.patch_merge_layer_index:
x = self.patch_merger(x)
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, patch_merge_layer = None, patch_merge_num_tokens = 8, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, patch_merge_layer, patch_merge_num_tokens)
self.mlp_head = nn.Sequential(
Reduce('b n d -> b d', 'mean'),
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
x += self.pos_embedding[:, :n]
x = self.dropout(x)
x = self.transformer(x)
return self.mlp_head(x)