Compare commits

...

9 Commits

Author SHA1 Message Date
Phil Wang
681a7407e9 release MobileViT, from @murufeng 2021-12-21 09:52:22 -08:00
Phil Wang
86a7302ba6 Merge pull request #181 from murufeng/main
Add MobileViT
2021-12-21 09:51:56 -08:00
murufeng
89d3a04b3f Add files via upload 2021-12-21 20:48:34 +08:00
murufeng
e7075c64aa Update README.md 2021-12-21 20:44:30 +08:00
murufeng
5ea1559e4c Add files via upload 2021-12-21 20:41:01 +08:00
Phil Wang
f4b0b14094 add ATS to table of contents 2021-12-03 20:07:18 -08:00
Phil Wang
365b4d931e add adaptive token sampling paper 2021-12-03 19:52:40 -08:00
Phil Wang
79c864d796 link to community youtuber 2021-11-24 08:13:52 -08:00
Phil Wang
b45c1356a1 cleanup 2021-11-22 22:53:02 -08:00
7 changed files with 565 additions and 10 deletions

View File

@@ -19,9 +19,11 @@
- [CrossFormer](#crossformer)
- [RegionViT](#regionvit)
- [NesT](#nest)
- [MobileViT](#mobilevit)
- [Masked Autoencoder](#masked-autoencoder)
- [Simple Masked Image Modeling](#simple-masked-image-modeling)
- [Masked Patch Prediction](#masked-patch-prediction)
- [Adaptive Token Sampling](#adaptive-token-sampling)
- [Dino](#dino)
- [Accessing Attention](#accessing-attention)
- [Research Ideas](#research-ideas)
@@ -548,6 +550,31 @@ img = torch.randn(1, 3, 224, 224)
pred = nest(img) # (1, 1000)
```
## MobileViT
<img src="./images/mbvit.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2110.02178">paper</a> introduce MobileViT, a light-weight and generalpurpose vision transformer for mobile devices. MobileViT presents a different
perspective for the global processing of information with transformers.
You can use it with the following code (ex. mobilevit_xs)
```
import torch
from vit_pytorch.mobile_vit import MobileViT
mbvit_xs = MobileViT(
image_size=(256, 256),
dims = [96, 120, 144],
channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384],
num_classes = 1000
)
img = torch.randn(1, 3, 256, 256)
pred = mbvit_xs(img) # (1, 1000)
```
## Simple Masked Image Modeling
<img src="./images/simmim.png" width="400px"/>
@@ -596,6 +623,8 @@ A new <a href="https://arxiv.org/abs/2111.06377">Kaiming He paper</a> proposes a
<a href="https://www.youtube.com/watch?v=LKixq2S2Pz8">DeepReader quick paper review</a>
<a href="https://www.youtube.com/watch?v=Dp6iICL2dVI">AI Coffeebreak with Letitia</a>
You can use it with the following code
```python
@@ -677,6 +706,39 @@ for _ in range(100):
torch.save(model.state_dict(), './pretrained-net.pt')
```
## Adaptive Token Sampling
<img src="./images/ats.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2111.15667">paper</a> proposes to use the CLS attention scores, re-weighed by the norms of the value heads, as means to discard unimportant tokens at different layers.
```python
import torch
from vit_pytorch.ats_vit import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
max_tokens_per_depth = (256, 128, 64, 32, 16, 8), # a tuple that denotes the maximum number of tokens that any given layer should have. if the layer has greater than this amount, it will undergo adaptive token sampling
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (1, 1000)
# you can also get a list of the final sampled patch ids
# a value of -1 denotes padding
preds, token_ids = v(img, return_sampled_token_ids = True) # (1, 1000), (1, <=8)
```
## Dino
<img src="./images/dino.png" width="350px"></img>
@@ -1117,6 +1179,17 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@misc{fayyaz2021ats,
title = {ATS: Adaptive Token Sampling For Efficient Vision Transformers},
author = {Mohsen Fayyaz and Soroush Abbasi Kouhpayegani and Farnoush Rezaei Jafari and Eric Sommerlade and Hamid Reza Vaezi Joze and Hamed Pirsiavash and Juergen Gall},
year = {2021},
eprint = {2111.15667},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},

BIN
images/ats.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 198 KiB

BIN
images/mbvit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 206 KiB

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.24.2',
version = '0.25.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',

262
vit_pytorch/ats_vit.py Normal file
View File

@@ -0,0 +1,262 @@
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# adaptive token sampling functions and classes
def log(t, eps = 1e-6):
return torch.log(t + eps)
def sample_gumbel(shape, device, dtype, eps = 1e-6):
u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1)
return -log(-log(u, eps), eps)
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
class AdaptiveTokenSampling(nn.Module):
def __init__(self, output_num_tokens, eps = 1e-6):
super().__init__()
self.eps = eps
self.output_num_tokens = output_num_tokens
def forward(self, attn, value, mask):
heads, output_num_tokens, eps, device, dtype = attn.shape[1], self.output_num_tokens, self.eps, attn.device, attn.dtype
# first get the attention values for CLS token to all other tokens
cls_attn = attn[..., 0, 1:]
# calculate the norms of the values, for weighting the scores, as described in the paper
value_norms = value[..., 1:, :].norm(dim = -1)
# weigh the attention scores by the norm of the values, sum across all heads
cls_attn = einsum('b h n, b h n -> b n', cls_attn, value_norms)
# normalize to 1
normed_cls_attn = cls_attn / (cls_attn.sum(dim = -1, keepdim = True) + eps)
# instead of using inverse transform sampling, going to invert the softmax and use gumbel-max sampling instead
pseudo_logits = log(normed_cls_attn)
# mask out pseudo logits for gumbel-max sampling
mask_without_cls = mask[:, 1:]
mask_value = -torch.finfo(attn.dtype).max / 2
pseudo_logits = pseudo_logits.masked_fill(~mask_without_cls, mask_value)
# expand k times, k being the adaptive sampling number
pseudo_logits = repeat(pseudo_logits, 'b n -> b k n', k = output_num_tokens)
pseudo_logits = pseudo_logits + sample_gumbel(pseudo_logits.shape, device = device, dtype = dtype)
# gumble-max and add one to reserve 0 for padding / mask
sampled_token_ids = pseudo_logits.argmax(dim = -1) + 1
# calculate unique using torch.unique and then pad the sequence from the right
unique_sampled_token_ids_list = [torch.unique(t, sorted = True) for t in torch.unbind(sampled_token_ids)]
unique_sampled_token_ids = pad_sequence(unique_sampled_token_ids_list, batch_first = True)
# calculate the new mask, based on the padding
new_mask = unique_sampled_token_ids != 0
# CLS token never gets masked out (gets a value of True)
new_mask = F.pad(new_mask, (1, 0), value = True)
# prepend a 0 token id to keep the CLS attention scores
unique_sampled_token_ids = F.pad(unique_sampled_token_ids, (1, 0), value = 0)
expanded_unique_sampled_token_ids = repeat(unique_sampled_token_ids, 'b n -> b h n', h = heads)
# gather the new attention scores
new_attn = batched_index_select(attn, expanded_unique_sampled_token_ids, dim = 2)
# return the sampled attention scores, new mask (denoting padding), as well as the sampled token indices (for the residual)
return new_attn, new_mask, unique_sampled_token_ids
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., output_num_tokens = None):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.output_num_tokens = output_num_tokens
self.ats = AdaptiveTokenSampling(output_num_tokens) if exists(output_num_tokens) else None
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, *, mask):
num_tokens = x.shape[1]
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
if exists(mask):
dots_mask = rearrange(mask, 'b i -> b 1 i 1') * rearrange(mask, 'b j -> b 1 1 j')
mask_value = -torch.finfo(dots.dtype).max
dots = dots.masked_fill(~dots_mask, mask_value)
attn = self.attend(dots)
sampled_token_ids = None
# if adaptive token sampling is enabled
# and number of tokens is greater than the number of output tokens
if exists(self.output_num_tokens) and (num_tokens - 1) > self.output_num_tokens:
attn, mask, sampled_token_ids = self.ats(attn, v, mask = mask)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out), mask, sampled_token_ids
class Transformer(nn.Module):
def __init__(self, dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
assert len(max_tokens_per_depth) == depth, 'max_tokens_per_depth must be a tuple of length that is equal to the depth of the transformer'
assert sorted(max_tokens_per_depth, reverse = True) == list(max_tokens_per_depth), 'max_tokens_per_depth must be in decreasing order'
assert min(max_tokens_per_depth) > 0, 'max_tokens_per_depth must have at least 1 token at any layer'
self.layers = nn.ModuleList([])
for _, output_num_tokens in zip(range(depth), max_tokens_per_depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
b, n, device = *x.shape[:2], x.device
# use mask to keep track of the paddings when sampling tokens
# as the duplicates (when sampling) are just removed, as mentioned in the paper
mask = torch.ones((b, n), device = device, dtype = torch.bool)
token_ids = torch.arange(n, device = device)
token_ids = repeat(token_ids, 'n -> b n', b = b)
for attn, ff in self.layers:
attn_out, mask, sampled_token_ids = attn(x, mask = mask)
# when token sampling, one needs to then gather the residual tokens with the sampled token ids
if exists(sampled_token_ids):
x = batched_index_select(x, sampled_token_ids, dim = 1)
token_ids = batched_index_select(token_ids, sampled_token_ids, dim = 1)
x = x + attn_out
x = ff(x) + x
return x, token_ids
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, max_tokens_per_depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img, return_sampled_token_ids = False):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x, token_ids = self.transformer(x)
logits = self.mlp_head(x[:, 0])
if return_sampled_token_ids:
# remove CLS token and decrement by 1 to make -1 the padding
token_ids = token_ids[:, 1:] - 1
return logits, token_ids
return logits

View File

@@ -6,18 +6,9 @@ import torch.nn.functional as F
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
def divisible_by(val, d):
return (val % d) == 0
# cross embed layer
class CrossEmbedLayer(nn.Module):

229
vit_pytorch/mobile_vit.py Normal file
View File

@@ -0,0 +1,229 @@
"""
An implementation of MobileViT Model as defined in:
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer
Arxiv: https://arxiv.org/abs/2110.02178
Origin Code: https://github.com/murufeng/awesome_lightweight_networks
"""
import torch
import torch.nn as nn
from einops import rearrange
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def Conv_BN_ReLU(inp, oup, kernel, stride=1):
return nn.Sequential(
nn.Conv2d(inp, oup, kernel_size=kernel, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.ffn = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.ffn(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b p h n d -> b p n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class MV2Block(nn.Module):
def __init__(self, inp, oup, stride=1, expand_ratio=4):
super(MV2Block, self).__init__()
assert stride in [1, 2]
hidden_dim = round(inp * expand_ratio)
self.identity = stride == 1 and inp == oup
if expand_ratio == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.identity:
return x + self.conv(x)
else:
return self.conv(x)
class MobileViTBlock(nn.Module):
def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
super().__init__()
self.ph, self.pw = patch_size
self.conv1 = Conv_BN_ReLU(channel, channel, kernel_size)
self.conv2 = conv_1x1_bn(channel, dim)
self.transformer = Transformer(dim, depth, 1, 32, mlp_dim, dropout)
self.conv3 = conv_1x1_bn(dim, channel)
self.conv4 = Conv_BN_ReLU(2 * channel, channel, kernel_size)
def forward(self, x):
y = x.clone()
# Local representations
x = self.conv1(x)
x = self.conv2(x)
# Global representations
_, _, h, w = x.shape
x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
x = self.transformer(x)
x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h // self.ph, w=w // self.pw, ph=self.ph,
pw=self.pw)
# Fusion
x = self.conv3(x)
x = torch.cat((x, y), 1)
x = self.conv4(x)
return x
class MobileViT(nn.Module):
def __init__(self, image_size, dims, channels, num_classes, expansion=4, kernel_size=3, patch_size=(2, 2)):
super().__init__()
ih, iw = image_size
ph, pw = patch_size
assert ih % ph == 0 and iw % pw == 0
L = [2, 4, 3]
self.conv1 = Conv_BN_ReLU(3, channels[0], kernel=3, stride=2)
self.mv2 = nn.ModuleList([])
self.mv2.append(MV2Block(channels[0], channels[1], 1, expansion))
self.mv2.append(MV2Block(channels[1], channels[2], 2, expansion))
self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))
self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))
self.mv2.append(MV2Block(channels[3], channels[4], 2, expansion))
self.mv2.append(MV2Block(channels[5], channels[6], 2, expansion))
self.mv2.append(MV2Block(channels[7], channels[8], 2, expansion))
self.mvit = nn.ModuleList([])
self.mvit.append(MobileViTBlock(dims[0], L[0], channels[5], kernel_size, patch_size, int(dims[0] * 2)))
self.mvit.append(MobileViTBlock(dims[1], L[1], channels[7], kernel_size, patch_size, int(dims[1] * 4)))
self.mvit.append(MobileViTBlock(dims[2], L[2], channels[9], kernel_size, patch_size, int(dims[2] * 4)))
self.conv2 = conv_1x1_bn(channels[-2], channels[-1])
self.pool = nn.AvgPool2d(ih // 32, 1)
self.fc = nn.Linear(channels[-1], num_classes, bias=False)
def forward(self, x):
x = self.conv1(x)
x = self.mv2[0](x)
x = self.mv2[1](x)
x = self.mv2[2](x)
x = self.mv2[3](x)
x = self.mv2[4](x)
x = self.mvit[0](x)
x = self.mv2[5](x)
x = self.mvit[1](x)
x = self.mv2[6](x)
x = self.mvit[2](x)
x = self.conv2(x)
x = self.pool(x).view(-1, x.shape[1])
x = self.fc(x)
return x