mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
64aae4680b | ||
|
|
6d7298d8ad | ||
|
|
9cd56ff29b | ||
|
|
2aae406ce8 | ||
|
|
c2b2db2a54 | ||
|
|
719048d1bd | ||
|
|
d27721a85a |
148
README.md
148
README.md
@@ -18,6 +18,7 @@
|
||||
- [Twins SVT](#twins-svt)
|
||||
- [CrossFormer](#crossformer)
|
||||
- [RegionViT](#regionvit)
|
||||
- [ScalableViT](#scalablevit)
|
||||
- [NesT](#nest)
|
||||
- [MobileViT](#mobilevit)
|
||||
- [Masked Autoencoder](#masked-autoencoder)
|
||||
@@ -26,6 +27,7 @@
|
||||
- [Adaptive Token Sampling](#adaptive-token-sampling)
|
||||
- [Patch Merger](#patch-merger)
|
||||
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
|
||||
- [Parallel ViT](#parallel-vit)
|
||||
- [Dino](#dino)
|
||||
- [Accessing Attention](#accessing-attention)
|
||||
- [Research Ideas](#research-ideas)
|
||||
@@ -43,6 +45,8 @@ For a Pytorch implementation with pretrained models, please see Ross Wightman's
|
||||
|
||||
The official Jax repository is <a href="https://github.com/google-research/vision_transformer">here</a>.
|
||||
|
||||
A tensorflow2 translation also exists <a href="https://github.com/taki0112/vit-tensorflow">here</a>, created by research scientist <a href="https://github.com/taki0112">Junho Kim</a>! 🙏
|
||||
|
||||
## Install
|
||||
|
||||
```bash
|
||||
@@ -239,6 +243,7 @@ preds = v(img) # (1, 1000)
|
||||
```
|
||||
|
||||
## CCT
|
||||
|
||||
<img src="https://raw.githubusercontent.com/SHI-Labs/Compact-Transformers/main/images/model_sym.png" width="400px"></img>
|
||||
|
||||
<a href="https://arxiv.org/abs/2104.05704">CCT</a> proposes compact transformers
|
||||
@@ -250,22 +255,25 @@ You can use this with two methods
|
||||
import torch
|
||||
from vit_pytorch.cct import CCT
|
||||
|
||||
model = CCT(
|
||||
img_size=224,
|
||||
embedding_dim=384,
|
||||
n_conv_layers=2,
|
||||
kernel_size=7,
|
||||
stride=2,
|
||||
padding=3,
|
||||
pooling_kernel_size=3,
|
||||
pooling_stride=2,
|
||||
pooling_padding=1,
|
||||
num_layers=14,
|
||||
num_heads=6,
|
||||
mlp_radio=3.,
|
||||
num_classes=1000,
|
||||
positional_embedding='learnable', # ['sine', 'learnable', 'none']
|
||||
)
|
||||
cct = CCT(
|
||||
img_size = (224, 448),
|
||||
embedding_dim = 384,
|
||||
n_conv_layers = 2,
|
||||
kernel_size = 7,
|
||||
stride = 2,
|
||||
padding = 3,
|
||||
pooling_kernel_size = 3,
|
||||
pooling_stride = 2,
|
||||
pooling_padding = 1,
|
||||
num_layers = 14,
|
||||
num_heads = 6,
|
||||
mlp_radio = 3.,
|
||||
num_classes = 1000,
|
||||
positional_embedding = 'learnable', # ['sine', 'learnable', 'none']
|
||||
)
|
||||
|
||||
img = torch.randn(1, 3, 224, 448)
|
||||
pred = cct(img) # (1, 1000)
|
||||
```
|
||||
|
||||
Alternatively you can use one of several pre-defined models `[2,4,6,7,8,14,16]`
|
||||
@@ -276,23 +284,23 @@ and the embedding dimension.
|
||||
import torch
|
||||
from vit_pytorch.cct import cct_14
|
||||
|
||||
model = cct_14(
|
||||
img_size=224,
|
||||
n_conv_layers=1,
|
||||
kernel_size=7,
|
||||
stride=2,
|
||||
padding=3,
|
||||
pooling_kernel_size=3,
|
||||
pooling_stride=2,
|
||||
pooling_padding=1,
|
||||
num_classes=1000,
|
||||
positional_embedding='learnable', # ['sine', 'learnable', 'none']
|
||||
)
|
||||
cct = cct_14(
|
||||
img_size = 224,
|
||||
n_conv_layers = 1,
|
||||
kernel_size = 7,
|
||||
stride = 2,
|
||||
padding = 3,
|
||||
pooling_kernel_size = 3,
|
||||
pooling_stride = 2,
|
||||
pooling_padding = 1,
|
||||
num_classes = 1000,
|
||||
positional_embedding = 'learnable', # ['sine', 'learnable', 'none']
|
||||
)
|
||||
```
|
||||
|
||||
<a href="https://github.com/SHI-Labs/Compact-Transformers">Official
|
||||
Repository</a> includes links to pretrained model checkpoints.
|
||||
|
||||
|
||||
## Cross ViT
|
||||
|
||||
<img src="./images/cross_vit.png" width="400px"></img>
|
||||
@@ -525,6 +533,38 @@ img = torch.randn(1, 3, 224, 224)
|
||||
pred = model(img) # (1, 1000)
|
||||
```
|
||||
|
||||
## ScalableViT
|
||||
|
||||
<img src="./images/scalable-vit-1.png" width="400px"></img>
|
||||
|
||||
<img src="./images/scalable-vit-2.png" width="400px"></img>
|
||||
|
||||
This Bytedance AI <a href="https://arxiv.org/abs/2203.10790">paper</a> proposes the Scalable Self Attention (SSA) and the Interactive Windowed Self Attention (IWSA) modules. The SSA alleviates the computation needed at earlier stages by reducing the key / value feature map by some factor (`reduction_factor`), while modulating the dimension of the queries and keys (`ssa_dim_key`). The IWSA performs self attention within local windows, similar to other vision transformer papers. However, they add a residual of the values, passed through a convolution of kernel size 3, which they named Local Interactive Module (LIM).
|
||||
|
||||
They make the claim in this paper that this scheme outperforms Swin Transformer, and also demonstrate competitive performance against Crossformer.
|
||||
|
||||
You can use it as follows (ex. ScalableViT-S)
|
||||
|
||||
```python
|
||||
import torch
|
||||
from vit_pytorch.scalable_vit import ScalableViT
|
||||
|
||||
model = ScalableViT(
|
||||
num_classes = 1000,
|
||||
dim = 64, # starting model dimension. at every stage, dimension is doubled
|
||||
heads = (2, 4, 8, 16), # number of attention heads at each stage
|
||||
depth = (2, 2, 20, 2), # number of transformer blocks at each stage
|
||||
ssa_dim_key = (40, 40, 40, 32), # the dimension of the attention keys (and queries) for SSA. in the paper, they represented this as a scale factor on the base dimension per key (ssa_dim_key / dim_key)
|
||||
reduction_factor = (8, 4, 2, 1), # downsampling of the key / values in SSA. in the paper, this was represented as (reduction_factor ** -2)
|
||||
window_size = (64, 32, None, None), # window size of the IWSA at each stage. None means no windowing needed
|
||||
dropout = 0.1, # attention and feedforward dropout
|
||||
).cuda()
|
||||
|
||||
img = torch.randn(1, 3, 256, 256).cuda()
|
||||
|
||||
preds = model(img) # (1, 1000)
|
||||
```
|
||||
|
||||
## NesT
|
||||
|
||||
<img src="./images/nest.png" width="400px"></img>
|
||||
@@ -833,6 +873,37 @@ img = torch.randn(4, 3, 256, 256)
|
||||
tokens = spt(img) # (4, 256, 1024)
|
||||
```
|
||||
|
||||
## Parallel ViT
|
||||
|
||||
<img src="./images/parallel-vit.png" width="350px"></img>
|
||||
|
||||
This <a href="https://arxiv.org/abs/2203.09795">paper</a> propose parallelizing multiple attention and feedforward blocks per layer (2 blocks), claiming that it is easier to train without loss of performance.
|
||||
|
||||
You can try this variant as follows
|
||||
|
||||
```python
|
||||
import torch
|
||||
from vit_pytorch.parallel_vit import ViT
|
||||
|
||||
v = ViT(
|
||||
image_size = 256,
|
||||
patch_size = 16,
|
||||
num_classes = 1000,
|
||||
dim = 1024,
|
||||
depth = 6,
|
||||
heads = 8,
|
||||
mlp_dim = 2048,
|
||||
num_parallel_branches = 2, # in paper, they claimed 2 was optimal
|
||||
dropout = 0.1,
|
||||
emb_dropout = 0.1
|
||||
)
|
||||
|
||||
img = torch.randn(4, 3, 256, 256)
|
||||
|
||||
preds = v(img) # (4, 1000)
|
||||
```
|
||||
|
||||
|
||||
## Dino
|
||||
|
||||
<img src="./images/dino.png" width="350px"></img>
|
||||
@@ -1352,6 +1423,25 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{yang2022scalablevit,
|
||||
title = {ScalableViT: Rethinking the Context-oriented Generalization of Vision Transformer},
|
||||
author = {Rui Yang and Hailong Ma and Jie Wu and Yansong Tang and Xuefeng Xiao and Min Zheng and Xiu Li},
|
||||
year = {2022},
|
||||
eprint = {2203.10790},
|
||||
archivePrefix = {arXiv},
|
||||
primaryClass = {cs.CV}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@inproceedings{Touvron2022ThreeTE,
|
||||
title = {Three things everyone should know about Vision Transformers},
|
||||
author = {Hugo Touvron and Matthieu Cord and Alaaeldin El-Nouby and Jakob Verbeek and Herv'e J'egou},
|
||||
year = {2022}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{vaswani2017attention,
|
||||
title = {Attention Is All You Need},
|
||||
|
||||
BIN
images/parallel-vit.png
Normal file
BIN
images/parallel-vit.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 14 KiB |
BIN
images/scalable-vit-1.png
Normal file
BIN
images/scalable-vit-1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 79 KiB |
BIN
images/scalable-vit-2.png
Normal file
BIN
images/scalable-vit-2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 62 KiB |
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '0.27.1',
|
||||
version = '0.30.0',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -139,6 +139,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.output_num_tokens = output_num_tokens
|
||||
@@ -163,6 +165,7 @@ class Attention(nn.Module):
|
||||
dots = dots.masked_fill(~dots_mask, mask_value)
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
sampled_token_ids = None
|
||||
|
||||
|
||||
@@ -76,6 +76,7 @@ class Attention(nn.Module):
|
||||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads))
|
||||
self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads))
|
||||
@@ -96,7 +97,10 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn) # talking heads, pre-softmax
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
attn = einsum('b h i j, h g -> b g i j', attn, self.mix_heads_post_attn) # talking heads, post-softmax
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
|
||||
@@ -2,7 +2,13 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
# Pre-defined CCT Models
|
||||
# helpers
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
# CCT Models
|
||||
|
||||
__all__ = ['cct_2', 'cct_4', 'cct_6', 'cct_7', 'cct_8', 'cct_14', 'cct_16']
|
||||
|
||||
|
||||
@@ -55,8 +61,8 @@ def _cct(num_layers, num_heads, mlp_ratio, embedding_dim,
|
||||
padding=padding,
|
||||
*args, **kwargs)
|
||||
|
||||
# modules
|
||||
|
||||
# Modules
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, attention_dropout=0.1, projection_dropout=0.1):
|
||||
super().__init__()
|
||||
@@ -308,6 +314,7 @@ class CCT(nn.Module):
|
||||
pooling_padding=1,
|
||||
*args, **kwargs):
|
||||
super(CCT, self).__init__()
|
||||
img_height, img_width = pair(img_size)
|
||||
|
||||
self.tokenizer = Tokenizer(n_input_channels=n_input_channels,
|
||||
n_output_channels=embedding_dim,
|
||||
@@ -324,8 +331,8 @@ class CCT(nn.Module):
|
||||
|
||||
self.classifier = TransformerClassifier(
|
||||
sequence_length=self.tokenizer.sequence_length(n_channels=n_input_channels,
|
||||
height=img_size,
|
||||
width=img_size),
|
||||
height=img_height,
|
||||
width=img_width),
|
||||
embedding_dim=embedding_dim,
|
||||
seq_pool=True,
|
||||
dropout_rate=0.,
|
||||
@@ -336,4 +343,3 @@ class CCT(nn.Module):
|
||||
def forward(self, x):
|
||||
x = self.tokenizer(x)
|
||||
return self.classifier(x)
|
||||
|
||||
|
||||
@@ -48,6 +48,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
||||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
||||
|
||||
@@ -69,6 +71,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -95,6 +95,9 @@ class Attention(nn.Module):
|
||||
self.window_size = window_size
|
||||
|
||||
self.norm = LayerNorm(dim)
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
|
||||
self.to_out = nn.Conv2d(inner_dim, dim, 1)
|
||||
|
||||
@@ -151,6 +154,7 @@ class Attention(nn.Module):
|
||||
# attend
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# merge heads
|
||||
|
||||
|
||||
@@ -76,6 +76,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_q = DepthWiseConv2d(dim, inner_dim, proj_kernel, padding = padding, stride = 1, bias = False)
|
||||
self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, proj_kernel, padding = padding, stride = kv_proj_stride, bias = False)
|
||||
@@ -94,6 +95,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)
|
||||
|
||||
@@ -42,6 +42,8 @@ class Attention(nn.Module):
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.reattn_weights = nn.Parameter(torch.randn(heads, heads))
|
||||
|
||||
self.reattn_norm = nn.Sequential(
|
||||
@@ -64,6 +66,7 @@ class Attention(nn.Module):
|
||||
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
attn = dots.softmax(dim=-1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# re-attention
|
||||
|
||||
|
||||
@@ -52,6 +52,7 @@ class Attention(nn.Module):
|
||||
self.to_v = nn.Sequential(nn.Conv2d(dim, inner_dim_value, 1, bias = False), nn.BatchNorm2d(inner_dim_value))
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
out_batch_norm = nn.BatchNorm2d(dim_out)
|
||||
nn.init.zeros_(out_batch_norm.weight)
|
||||
@@ -100,6 +101,7 @@ class Attention(nn.Module):
|
||||
dots = self.apply_pos_bias(dots)
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h (x y) d -> b (h d) x y', h = h, y = y)
|
||||
|
||||
@@ -78,6 +78,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -93,6 +94,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -54,6 +54,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim=-1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -67,7 +69,10 @@ class Attention(nn.Module):
|
||||
t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b p h n d -> b p n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
@@ -55,6 +55,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -71,6 +72,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w)
|
||||
|
||||
140
vit_pytorch/parallel_vit.py
Normal file
140
vit_pytorch/parallel_vit.py
Normal file
@@ -0,0 +1,140 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
# classes
|
||||
|
||||
class Parallel(nn.Module):
|
||||
def __init__(self, *fns):
|
||||
super().__init__()
|
||||
self.fns = nn.ModuleList(fns)
|
||||
|
||||
def forward(self, x):
|
||||
return sum([fn(x) for fn in self.fns])
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
project_out = not (heads == 1 and dim_head == dim)
|
||||
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
) if project_out else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, num_parallel_branches = 2, dropout = 0.):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
|
||||
attn_block = lambda: PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))
|
||||
ff_block = lambda: PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
||||
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
Parallel(*[attn_block() for _ in range(num_parallel_branches)]),
|
||||
Parallel(*[ff_block() for _ in range(num_parallel_branches)]),
|
||||
]))
|
||||
|
||||
def forward(self, x):
|
||||
for attns, ffs in self.layers:
|
||||
x = attns(x) + x
|
||||
x = ffs(x) + x
|
||||
return x
|
||||
|
||||
class ViT(nn.Module):
|
||||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', num_parallel_branches = 2, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
|
||||
super().__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.Linear(patch_dim, dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, num_parallel_branches, dropout)
|
||||
|
||||
self.pool = pool
|
||||
self.to_latent = nn.Identity()
|
||||
|
||||
self.mlp_head = nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, img):
|
||||
x = self.to_patch_embedding(img)
|
||||
b, n, _ = x.shape
|
||||
|
||||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
x += self.pos_embedding[:, :(n + 1)]
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.transformer(x)
|
||||
|
||||
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
|
||||
|
||||
x = self.to_latent(x)
|
||||
return self.mlp_head(x)
|
||||
@@ -48,6 +48,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -63,6 +64,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn= self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -61,8 +61,13 @@ class Attention(nn.Module):
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
self.to_out = nn.Linear(inner_dim, dim)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, rel_pos_bias = None):
|
||||
h = self.heads
|
||||
@@ -86,6 +91,7 @@ class Attention(nn.Module):
|
||||
sim = sim + rel_pos_bias
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# merge heads
|
||||
|
||||
|
||||
@@ -104,6 +104,7 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.use_ds_conv = use_ds_conv
|
||||
|
||||
@@ -148,6 +149,7 @@ class Attention(nn.Module):
|
||||
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
|
||||
|
||||
306
vit_pytorch/scalable_vit.py
Normal file
306
vit_pytorch/scalable_vit.py
Normal file
@@ -0,0 +1,306 @@
|
||||
from functools import partial
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange, Reduce
|
||||
|
||||
# helpers
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
def cast_tuple(val, length = 1):
|
||||
return val if isinstance(val, tuple) else ((val,) * length)
|
||||
|
||||
# helper classes
|
||||
|
||||
class ChanLayerNorm(nn.Module):
|
||||
def __init__(self, dim, eps = 1e-5):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
||||
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
|
||||
|
||||
def forward(self, x):
|
||||
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
||||
mean = torch.mean(x, dim = 1, keepdim = True)
|
||||
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = ChanLayerNorm(dim)
|
||||
self.fn = fn
|
||||
|
||||
def forward(self, x):
|
||||
return self.fn(self.norm(x))
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(dim_in, dim_out, 3, stride = 2, padding = 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
class PEG(nn.Module):
|
||||
def __init__(self, dim, kernel_size = 3):
|
||||
super().__init__()
|
||||
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.proj(x) + x
|
||||
|
||||
# feedforward
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, expansion_factor = 4, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim * expansion_factor
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(dim, inner_dim, 1),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Conv2d(inner_dim, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# attention
|
||||
|
||||
class ScalableSelfAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
heads = 8,
|
||||
dim_key = 32,
|
||||
dim_value = 32,
|
||||
dropout = 0.,
|
||||
reduction_factor = 1
|
||||
):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.scale = dim_key ** -0.5
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
|
||||
self.to_k = nn.Conv2d(dim, dim_key * heads, reduction_factor, stride = reduction_factor, bias = False)
|
||||
self.to_v = nn.Conv2d(dim, dim_value * heads, reduction_factor, stride = reduction_factor, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Conv2d(dim_value * heads, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
height, width, heads = *x.shape[-2:], self.heads
|
||||
|
||||
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
|
||||
|
||||
# split out heads
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v))
|
||||
|
||||
# similarity
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
# attention
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# aggregate values
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
|
||||
# merge back heads
|
||||
|
||||
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = height, y = width)
|
||||
return self.to_out(out)
|
||||
|
||||
class InteractiveWindowedSelfAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
window_size,
|
||||
heads = 8,
|
||||
dim_key = 32,
|
||||
dim_value = 32,
|
||||
dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.scale = dim_key ** -0.5
|
||||
self.window_size = window_size
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.local_interactive_module = nn.Conv2d(dim_value * heads, dim_value * heads, 3, padding = 1)
|
||||
|
||||
self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
|
||||
self.to_k = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
|
||||
self.to_v = nn.Conv2d(dim, dim_value * heads, 1, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Conv2d(dim_value * heads, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
height, width, heads, wsz = *x.shape[-2:], self.heads, self.window_size
|
||||
|
||||
wsz_h, wsz_w = default(wsz, height), default(wsz, width)
|
||||
assert (height % wsz_h) == 0 and (width % wsz_w) == 0, f'height ({height}) or width ({width}) of feature map is not divisible by the window size ({wsz_h}, {wsz_w})'
|
||||
|
||||
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
|
||||
|
||||
# get output of LIM
|
||||
|
||||
local_out = self.local_interactive_module(v)
|
||||
|
||||
# divide into window (and split out heads) for efficient self attention
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b (h d) (x w1) (y w2) -> (b x y) h (w1 w2) d', h = heads, w1 = wsz_h, w2 = wsz_w), (q, k, v))
|
||||
|
||||
# similarity
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
# attention
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# aggregate values
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
|
||||
# reshape the windows back to full feature map (and merge heads)
|
||||
|
||||
out = rearrange(out, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz_h, y = width // wsz_w, w1 = wsz_h, w2 = wsz_w)
|
||||
|
||||
# add LIM output
|
||||
|
||||
out = out + local_out
|
||||
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
depth,
|
||||
heads = 8,
|
||||
ff_expansion_factor = 4,
|
||||
dropout = 0.,
|
||||
ssa_dim_key = 32,
|
||||
ssa_dim_value = 32,
|
||||
ssa_reduction_factor = 1,
|
||||
iwsa_dim_key = 32,
|
||||
iwsa_dim_value = 32,
|
||||
iwsa_window_size = None,
|
||||
norm_output = True
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for ind in range(depth):
|
||||
is_first = ind == 0
|
||||
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, ScalableSelfAttention(dim, heads = heads, dim_key = ssa_dim_key, dim_value = ssa_dim_value, reduction_factor = ssa_reduction_factor, dropout = dropout)),
|
||||
PreNorm(dim, FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout)),
|
||||
PEG(dim) if is_first else None,
|
||||
PreNorm(dim, FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout)),
|
||||
PreNorm(dim, InteractiveWindowedSelfAttention(dim, heads = heads, dim_key = iwsa_dim_key, dim_value = iwsa_dim_value, window_size = iwsa_window_size, dropout = dropout))
|
||||
]))
|
||||
|
||||
self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
for ssa, ff1, peg, iwsa, ff2 in self.layers:
|
||||
x = ssa(x) + x
|
||||
x = ff1(x) + x
|
||||
|
||||
if exists(peg):
|
||||
x = peg(x)
|
||||
|
||||
x = iwsa(x) + x
|
||||
x = ff2(x) + x
|
||||
|
||||
return self.norm(x)
|
||||
|
||||
class ScalableViT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_classes,
|
||||
dim,
|
||||
depth,
|
||||
heads,
|
||||
reduction_factor,
|
||||
window_size = None,
|
||||
iwsa_dim_key = 32,
|
||||
iwsa_dim_value = 32,
|
||||
ssa_dim_key = 32,
|
||||
ssa_dim_value = 32,
|
||||
ff_expansion_factor = 4,
|
||||
channels = 3,
|
||||
dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
self.to_patches = nn.Conv2d(channels, dim, 7, stride = 4, padding = 3)
|
||||
|
||||
assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage'
|
||||
|
||||
num_stages = len(depth)
|
||||
dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages)))
|
||||
|
||||
hyperparams_per_stage = [
|
||||
heads,
|
||||
ssa_dim_key,
|
||||
ssa_dim_value,
|
||||
reduction_factor,
|
||||
iwsa_dim_key,
|
||||
iwsa_dim_value,
|
||||
window_size,
|
||||
]
|
||||
|
||||
hyperparams_per_stage = list(map(partial(cast_tuple, length = num_stages), hyperparams_per_stage))
|
||||
assert all(tuple(map(lambda arr: len(arr) == num_stages, hyperparams_per_stage)))
|
||||
|
||||
self.layers = nn.ModuleList([])
|
||||
|
||||
for ind, (layer_dim, layer_depth, layer_heads, layer_ssa_dim_key, layer_ssa_dim_value, layer_ssa_reduction_factor, layer_iwsa_dim_key, layer_iwsa_dim_value, layer_window_size) in enumerate(zip(dims, depth, *hyperparams_per_stage)):
|
||||
is_last = ind == (num_stages - 1)
|
||||
|
||||
self.layers.append(nn.ModuleList([
|
||||
Transformer(dim = layer_dim, depth = layer_depth, heads = layer_heads, ff_expansion_factor = ff_expansion_factor, dropout = dropout, ssa_dim_key = layer_ssa_dim_key, ssa_dim_value = layer_ssa_dim_value, ssa_reduction_factor = layer_ssa_reduction_factor, iwsa_dim_key = layer_iwsa_dim_key, iwsa_dim_value = layer_iwsa_dim_value, iwsa_window_size = layer_window_size),
|
||||
Downsample(layer_dim, layer_dim * 2) if not is_last else None
|
||||
]))
|
||||
|
||||
self.mlp_head = nn.Sequential(
|
||||
Reduce('b d h w -> b d', 'mean'),
|
||||
nn.LayerNorm(dims[-1]),
|
||||
nn.Linear(dims[-1], num_classes)
|
||||
)
|
||||
|
||||
def forward(self, img):
|
||||
x = self.to_patches(img)
|
||||
|
||||
for transformer, downsample in self.layers:
|
||||
x = transformer(x)
|
||||
|
||||
if exists(downsample):
|
||||
x = downsample(x)
|
||||
|
||||
return self.mlp_head(x)
|
||||
@@ -130,6 +130,8 @@ class GlobalAttention(nn.Module):
|
||||
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
|
||||
self.to_kv = nn.Conv2d(dim, inner_dim * 2, k, stride = k, bias = False)
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Conv2d(inner_dim, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
@@ -145,6 +147,7 @@ class GlobalAttention(nn.Module):
|
||||
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
attn = dots.softmax(dim = -1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)
|
||||
|
||||
@@ -42,6 +42,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -56,6 +58,7 @@ class Attention(nn.Module):
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -42,6 +42,8 @@ class LSA(nn.Module):
|
||||
self.temperature = nn.Parameter(torch.log(torch.tensor(dim_head ** -0.5)))
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -60,6 +62,7 @@ class LSA(nn.Module):
|
||||
dots = dots.masked_fill(mask, mask_value)
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
@@ -63,6 +63,8 @@ class Attention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
@@ -77,6 +79,7 @@ class Attention(nn.Module):
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
Reference in New Issue
Block a user